Advertisement

Investigational New Drugs

, Volume 31, Issue 5, pp 1311–1320 | Cite as

A phase II study of the oral VEGF receptor tyrosine kinase inhibitor vatalanib (PTK787/ZK222584) in myelodysplastic syndrome: Cancer and Leukemia Group B study 10105 (Alliance)

  • Pankaj GuptaEmail author
  • Flora Mulkey
  • Robert P. Hasserjian
  • Ben L. Sanford
  • Ravi Vij
  • David D. Hurd
  • Olatoyosi M. Odenike
  • Clara D. Bloomfield
  • Kouros Owzar
  • Richard M. Stone
  • Richard A. Larson
  • for the Alliance for Clinical Trials in Oncology
PHASE II STUDIES

Summary

Background: Angiogenesis is implicated in the pathophysiology and progression of myelodysplastic syndromes (MDS). Vatalanib (PTK787/ZK222584; Novartis and Schering AG) inhibits receptor tyrosine kinases of vascular endothelial growth factor, platelet derived growth factor and c-Kit. We examined whether vatalanib induces hematological responses in MDS and/or delays progression to acute myeloid leukemia (AML) or death. Methods: Two cohorts were studied. Vatalanib 1250 mg orally was given once daily (cohort 1) or 750–1250 mg once daily in an intra-patient dose escalating schedule (cohort 2) in 28-day cycles to 155 patients with MDS; 142 patients were evaluable for response and 153 for toxicity. Results: The median age was 70.5 years; 51 % had low risk (International Prognostic Scoring System {IPSS} Low/Intermediate-1) and 32 % had high risk (IPSS Intermediate-2/High) MDS. Hematological improvement was achieved in 7/142 (5 %) patients; all 7 were among the 47 patients able to remain on vatalanib for at least 3 months (hematological improvement achieved in 15 % of these 47 patients). For patients with low risk and high risk MDS, respectively, median progression-free survivals were 15 and 6 months, median times to transformation to AML were 28 and 6 months, and median overall survivals were 36 and 10 months. The most frequent non-hematological adverse events grade ≥2 were fatigue, nausea or vomiting, dizziness, anorexia, ataxia, diarrhea, and pain. Two deaths (one intra-cerebral hemorrhage and one sudden death) were possibly related to vatalanib. Conclusions: Vatalanib induces improvement in blood counts in a small proportion of MDS patients. Clinical applicability is limited by side effects.

Keywords

(MeSH): Angiogenesis inhibitors Humans Myelodysplastic syndromes Treatment outcome Vascular endothelial growth factor 

Notes

Acknowledgements

We thank the CALGB physicians, nurses and data coordinators, and especially the patients who participated in this study and the CALGB protocol coordinator Michael Kelly, MA.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

The research for CALGB 10105 (Alliance) was supported, in part, by National Cancer Institute grants no. CA16450 (PG), CA33601 (FM, BLS, KO), CA32291 (RPH, RMS), CA77440 (RV), CA03927 (DDH), CA41287 (OMO, RAL), CA77658 (CDB), CA31946 to the Alliance for Clinical Trials in Oncology (Monica M. Bertagnolli, M.D., Chair) and CA33601 to the Alliance Statistics and Data Center (Daniel J. Sargent, Ph.D.). Dr. Clara D. Bloomfield was supported in part by the National Cancer Institute (CA101140) and by the Coleman Leukemia Research Foundation. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute.

The following institutions participated in this study

Christiana Care Health Services, Inc. CCOP, Wilmington, DE, Stephen Grubbs, M.D., supported by CA45418

Dana-Farber Cancer Institute, Boston, MA, Harold J. Burstein, M.D., Ph.D., supported by CA32291

Duke University Medical Center, Durham, NC, Jeffrey Crawford, M.D., supported by CA47577

Georgetown University Medical Center, Washington, DC, Bruce Cheson, M.D., supported by CA77597

Hematology-Oncology Associates of CNY CCOP, Syracuse, NY, Jeffrey Kirshner, M.D., supported by CA45389

Illinois Oncology Research Association, Peoria, IL, John W. Kugler, M.D., supported by CA35113

Kansas City Community Clinical Oncology Program CCOP, Kansas City, MO, Rakesh Gaur, M.D.

Massachusetts General Hospital, Boston, MA, Jeffrey W. Clark, M.D., supported by CA32291

Missouri Baptist Medical Center, St. Louis, MO, Alan P. Lyss, M.D., supported by CA114558-02

Mount Sinai Medical Center, Miami, FL, Michael A. Schwartz, M.D., supported by CA45564

NorthShore University HealthSystem CCOP, Evanston, IL, David L. Grinblatt, M.D.

Northern Indiana Cancer Research Consortium CCOP, South Bend, IN, Rafat Ansari, M.D., supported by CA86726

Rhode Island Hospital, Providence, RI, William Sikov, M.D., supported by CA08025

Roswell Park Cancer Institute, Buffalo, NY, Ellis Levine, M.D., supported by CA59518

Southeast Cancer Control Consortium Inc. CCOP, Goldsboro, NC, James N. Atkins, M.D., supported by CA45808

State University of New York Upstate Medical University, Syracuse, NY, Stephen L. Graziano, M.D., supported by CA21060

University of Chicago, Chicago, IL, Hedy L. Kindler, M.D., supported by CA41287

University of Texas Southwestern Medical Center, Dallas, TX, supported by CA37347

University of Iowa, Iowa City, IA, Daniel A. Vaena, M.D., supported by CA47642

University of Minnesota, Minneapolis, MN, Bruce A. Peterson, M.D., supported by CA16450

University of Missouri/Ellis Fischel Cancer Center, Columbia, MO, Karl E. Freter, M.D., supported by CA12046

University of Nebraska Medical Center, Omaha, NE, Apar Ganti, M.D., supported by CA77298

University of North Carolina at Chapel Hill, Chapel Hill, NC, Thomas C. Shea, M.D., supported by CA47559

University of Oklahoma, Oklahoma City, OK, Shubham Pant, M.D., supported by CA37447

University of Vermont, Burlington, VT, Steven M. Grunberg, M.D., supported by CA77406

Wake Forest University School of Medicine, Winston-Salem, NC, David D. Hurd, M.D., supported by CA03927

Supplementary material

10637_2013_9978_MOESM1_ESM.doc (39 kb)
ESM 1 (DOC 39 kb)
10637_2013_9978_MOESM2_ESM.doc (52 kb)
ESM 2 (DOC 51 kb)
10637_2013_9978_MOESM3_ESM.doc (37 kb)
ESM 3 (DOC 37 kb)
10637_2013_9978_MOESM4_ESM.doc (36 kb)
ESM 4 (DOC 36 kb)
10637_2013_9978_MOESM5_ESM.doc (34 kb)
ESM 5 (DOC 33 kb)

References

  1. 1.
    Scott BL, Deeg HJ (2010) Myelodysplastic syndromes. Annu Rev Med 61:345–358CrossRefGoogle Scholar
  2. 2.
    Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96(6):2240–2245PubMedGoogle Scholar
  3. 3.
    Pruneri G, Bertolini F, Soligo D, Carboni N, Cortelezzi A, Ferrucci PF et al (1999) Angiogenesis in myelodysplastic syndromes. Br J Cancer 81(8):1398–1401CrossRefGoogle Scholar
  4. 4.
    Verstovsek S, Estey E, Giles FJ, Manshouri T, Beran M, Rogers A et al (2000) Clinical relevance of VEGF receptors 1 and 2 in AML and MDS. Blood 96(11):103aGoogle Scholar
  5. 5.
    Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al (1999) Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 94(11):3717–3721PubMedGoogle Scholar
  6. 6.
    Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59:728–733PubMedGoogle Scholar
  7. 7.
    Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al (2001) Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97(5):1427–1434CrossRefGoogle Scholar
  8. 8.
    Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89(6):1870–1875PubMedGoogle Scholar
  9. 9.
    Ratajczak MZ, Ratajczak J, Machalinski B, Majka M, Marlicz W, Carter A et al (1998) Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth. Br J Haematol 103(4):969–979CrossRefGoogle Scholar
  10. 10.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733CrossRefGoogle Scholar
  11. 11.
    Gupta P, Niehans GA, LeRoy SC, Gupta K, Morrison VA, Schultz C et al (1999) Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival. Leukemia 13(1):44–53CrossRefGoogle Scholar
  12. 12.
    Kayagaki N, Kawasaki A, Ebata T, Ohmoto H, Ikeda S, Inoue S et al (1995) Metalloproteinase-mediated release of human Fas ligand. J Exp Med 182(6):1777–1783CrossRefGoogle Scholar
  13. 13.
    Solanilla A, Grosset C, Lemercier C, Dupouy M, Mahon FX, Schweitzer K et al (2000) Expression of Flt3-ligand by the endothelial cell. Leukemia 14(1):153–162CrossRefGoogle Scholar
  14. 14.
    Yamaguchi H, Ishii E, Saito S, Tashiro K, Fujita I, Yoshidomi S et al (1996) Umbilical vein endothelial cells are an important source of c-kit and stem cell factor which regulate the proliferation of haemopoietic progenitor cells. Br J Haematol 94(4):606–611CrossRefGoogle Scholar
  15. 15.
    Bold G, Altmann KH, Frei J, Lang M, Manley PW, Traxler P et al (2000) New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor- driven angiogenesis. J Med Chem 43(12):2310–2323CrossRefGoogle Scholar
  16. 16.
    Drevs J, Hofmann I, Hugenschmidt H, Wittig C, Madjar H, Muller M et al (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 60(17):4819–4824PubMedGoogle Scholar
  17. 17.
    Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J et al (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60(8):2178–2189PubMedGoogle Scholar
  18. 18.
    George D, Michaelson D, Oh WK, Reitsma D, Laurent D, Mietlowski W et al. (2003) Phase I study of PTK787/ZK 222584 (PTK/ZK) in metastatic renal cell carcinoma Proc Am Soc Clin Oncol 22:abstr 1548Google Scholar
  19. 19.
    Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21(21):3955–3964CrossRefGoogle Scholar
  20. 20.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) (2001) Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organization Classification of Tumours. IARC Press, Lyon, FranceGoogle Scholar
  21. 21.
    Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA et al (2000) 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 18(20):3558–3585CrossRefGoogle Scholar
  22. 22.
    Cheson BD, Bennett JM, Kantarjian H, Pinto A, Schiffer CA, Nimer SD et al (2000) Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96(12):3671–3674PubMedGoogle Scholar
  23. 23.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088Google Scholar
  24. 24.
    Roboz GJ, Giles FJ, List AF, Cortes JE, Carlin R, Kowalski M et al (2006) Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 20(6):952–957CrossRefGoogle Scholar
  25. 25.
    Jahan T, Gu L, Kratzke R, Dudek A, Otterson GA, Wang X et al (2012) Vatalanib in malignant mesothelioma: a phase II trial by the Cancer and Leukemia Group B (CALGB 30107). Lung Cancer 76(3):393–396CrossRefGoogle Scholar
  26. 26.
    Joensuu H, De Braud F, Grignagni G, De Pas T, Spitalieri G, Coco P et al (2011) Vatalanib for metastatic gastrointestinal stromal tumour (GIST) resistant to imatinib: final results of a phase II study. Br J Cancer 104(11):1686–1690CrossRefGoogle Scholar
  27. 27.
    Mross K, Drevs J, Muller M, Medinger M, Marme D, Hennig J et al (2005) Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 41(9):1291–1299CrossRefGoogle Scholar
  28. 28.
    Giles FJ, List AF, Carroll M, Cortes JE, Valickas J, Chen BL et al (2007) PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor of vascular endothelial growth factor (VEGF), has modest activity in myelofibrosis with myeloid metaplasia. Leuk Res 31(7):891–897CrossRefGoogle Scholar
  29. 29.
    Cook N, Basu B, Biswas S, Kareclas P, Mann C, Palmer C et al (2010) A phase 2 study of vatalanib in metastatic melanoma patients. Eur J Cancer 46(15):2671–2673CrossRefGoogle Scholar
  30. 30.
    Gauler TC, Besse B, Mauguen A, Meric JB, Gounant V, Fischer B et al (2012) Phase II trial of PTK787/ZK 222584 (vatalanib) administered orally once-daily or in two divided daily doses as second-line monotherapy in relapsed or progressing patients with stage IIIB/IV non-small-cell lung cancer (NSCLC). Ann Oncol 23(3):678–687CrossRefGoogle Scholar
  31. 31.
    Vij R, Ansstas G, Mosley JC, Bryant G, Hassan A, Amador-Ortiz C et al (2010) Efficacy and tolerability of PTK787/ZK 222584 in a phase II study of post-transplant maintenance therapy in patients with multiple myeloma following high-dose chemotherapy and autologous stem cell transplant. Leuk Lymphoma 51(8):1577–1579CrossRefGoogle Scholar
  32. 32.
    Gupta P, Miller AA, Owzar K, Murry DJ, Sanford BL, Vij R et al (2006) Pharmacokinetics of an oral VEGF receptor tyrosine kinase inhibitor (PTK787/ZK222584) in patients with myelodysplastic syndrome (MDS): Cancer and Leukemia Group B Study 10105. J Clin Oncol 24(18S):6573 (abstr)Google Scholar
  33. 33.
    Thomas AL, Morgan B, Horsfield MA, Higginson A, Kay A, Lee L et al (2005) Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 23(18):4162–4171CrossRefGoogle Scholar
  34. 34.
    Hecht JR, Trarbach T, Hainsworth JD, Major P, Jager E, Wolff RA et al (2011) Randomized, placebo-controlled, phase III study of first-line oxaliplatin-based chemotherapy plus PTK787/ZK 222584, an oral vascular endothelial growth factor receptor inhibitor, in patients with metastatic colorectal adenocarcinoma. J Clin Oncol 29(15):1997–2003CrossRefGoogle Scholar
  35. 35.
    Van Cutsem E, Bajetta E, Valle J, Kohne CH, Hecht JR, Moore M et al (2011) Randomized, placebo-controlled, phase III study of oxaliplatin, fluorouracil, and leucovorin with or without PTK787/ZK 222584 in patients with previously treated metastatic colorectal adenocarcinoma. J Clin Oncol 29(15):2004–2010CrossRefGoogle Scholar
  36. 36.
    Legros L, Slama B, Karsenti JM, Vey N, Natarajan-Ame S, Watel E et al (2012) Treatment of myelodysplastic syndromes with excess of blasts by bevacizumab is well tolerated and is associated with a decrease of VEGF plasma level. Ann Hematol 91(1):39–46CrossRefGoogle Scholar
  37. 37.
    Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL et al (2003) SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 102(3):795–801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pankaj Gupta
    • 1
    • 9
    Email author
  • Flora Mulkey
    • 2
  • Robert P. Hasserjian
    • 3
  • Ben L. Sanford
    • 2
  • Ravi Vij
    • 4
  • David D. Hurd
    • 5
  • Olatoyosi M. Odenike
    • 6
  • Clara D. Bloomfield
    • 7
  • Kouros Owzar
    • 2
  • Richard M. Stone
    • 8
  • Richard A. Larson
    • 6
  • for the Alliance for Clinical Trials in Oncology
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.Alliance Statistics and Data CenterDuke University Medical CenterDurhamUSA
  3. 3.Massachusetts General HospitalBostonUSA
  4. 4.Washington University in St. LouisSt. LouisUSA
  5. 5.Wake Forest UniversityWinston-SalemUSA
  6. 6.University of ChicagoChicagoUSA
  7. 7.The Ohio State UniversityColumbusUSA
  8. 8.Dana-Farber Cancer InstituteBostonUSA
  9. 9.Hematology/Oncology Section 111EMinneapolis VA Health Care SystemMinneapolisUSA

Personalised recommendations