Advertisement

Visual evoked cortical potential elicited by pseudoisochromatic stimulus

  • Railson Cruz Salomão
  • Isabelle Christine Vieira da Silva Martins
  • Bárbara Begot Oliveira Risuenho
  • Diego Leite Guimarães
  • Luiz Carlos Lima Silveira
  • Dora Fix Ventura
  • Givago Silva SouzaEmail author
Original Research Article
  • 18 Downloads

Abstract

Purpose

Visual evoked cortical potentials (VECPs) are useful for investigating the mechanisms and dysfunctions of color vision. Chromatic sinusoidal gratings are generally used to elicit VECPs, but they require long psychophysical measurements to match the perceptual luminance between their stripes. An alternative method is to use pseudoisochromatic stimuli, which makes use of luminance noise to mask luminance clues and force the target perception to be dependent on chromatic contrast. In this study, we compared VECPs generated by sinusoidal gratings and pseudoisochromatic gratings. Contrary to chromatic sinusoidal gratings, pseudoisochromatic stimuli do not require the use of previous methods to find the equiluminance of the stimulus.

Methods

Normal trichromats were recruited to be tested with red–green chromatic sinusoidal gratings and pseudoisochromatic gratings presented by pattern onset–offset and pattern reversal modes in five spatial frequencies. In addition, we also tested four different chromatic contrast pairs in pattern onset–offset mode presentation in five trichromats and one colorblind subject (deuteranope).

Results

Pattern onset–offset VECPs elicited by sinusoidal gratings had a larger amplitude than those obtained with pseudoisochromatic stimuli, whereas pattern reversal VECPs elicited by pseudoisochromatic gratings had similar amplitudes compared to those elicited by sinusoidal gratings. We found no difference between the VECP amplitudes elicited by sinusoidal and pseudoisochromatic gratings containing different chromatic contrast. Color-blind subjects displayed absent or small responses to the stimuli.

Conclusion

Pseudoisochromatic stimulus can be an alternative stimulus to generate VECPs dominated by the chromatic mechanism.

Keywords

Color Luminance VECP Visual cortex Visual perception Pseudoisochromatic stimulus 

Notes

Acknowledgements

This research was supported by the following grants: CAPES, CAPES-Pro-Amazônia, CNPq # 431748/2016-0. RCS, ICVSM, and BBOR received CAPES fellowships for graduate students. DFV and LCLS are CNPq research fellows. LCLS passed away during the process of manuscript writing.

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Tropical Medicine Center Committee) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

No animals were used in this study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Tolhurst DJ, Tadmor Y (1997) Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra of natural scenes. Vis Res 37:3203–3215CrossRefGoogle Scholar
  2. 2.
    Frazor RA, Geisler WS (2006) Local luminance and contrast in natural images. Vis Res 46:1585–1598CrossRefGoogle Scholar
  3. 3.
    Wassle H (2004) Parallel processing in the mammalian retina. Nat Neurosci 5:1–11Google Scholar
  4. 4.
    Gouras P (1968) Identification of cone mechanisms in monkey ganglion cells. J Physiol 199:533–547CrossRefGoogle Scholar
  5. 5.
    Silveira LC, Saito CA, Lee BB, Kremers J, da Silva Filho M, Kilavik BE, Yamada ES, Perry VH (2004) Morphology and physiology of primate M- and P-cells. Prog Brain Res 144:21–46CrossRefGoogle Scholar
  6. 6.
    De Monasterio FM, Gouras P (1975) Functional properties of ganglion cells of the rhesus monkey retina. J Physiol 251:167–195CrossRefGoogle Scholar
  7. 7.
    Lee BB, Martin PR, Valberg A (1989) Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. J Physiol 414:223–243CrossRefGoogle Scholar
  8. 8.
    De Monasterio FM (1978) Properties of concentrically organized X and Y ganglion cells of macaque retina. J Neurophysiol 41:1394–1417CrossRefGoogle Scholar
  9. 9.
    De Monasterio FM (1978) Center and surround mechanisms of opponent-colour X and Y ganglion cells of retina of macaques. J Neurophysiol 41:1418–1434CrossRefGoogle Scholar
  10. 10.
    Perry VH, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–1123CrossRefGoogle Scholar
  11. 11.
    Merigan WH (1989) Chromatic and achromatic vision of macaques: role of the P pathway. J Neurosci 9:776–783CrossRefGoogle Scholar
  12. 12.
    Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416CrossRefGoogle Scholar
  13. 13.
    Li X, Chen Y, Lashgari R, Bereshpolova Y, Swadlow HA, Lee BB, Alonso JM (2015) Mixing of chromatic and luminance retinal signals in primate area V1. Cereb Cortex 25:1920–1937CrossRefGoogle Scholar
  14. 14.
    Nakayama K, Mackeben M (1982) Steady state visual evoked potentials in the alert primate. Vis Res 22:1261–1271CrossRefGoogle Scholar
  15. 15.
    Murray IJ, Kulikowski JJ (1983) VEPs and contrast. Vision and contrast. Vis Res 23:1741–1743CrossRefGoogle Scholar
  16. 16.
    Carden D, Kulikowski JJ, Murray IJ, Parry NRA (1985) Human occipital potentials evoked by the onset of equiluminant chromatic gratings. J Physiol 369:44PGoogle Scholar
  17. 17.
    Valberg A, Rudvin I (1997) Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs. Vis Neurosci 14:1–11CrossRefGoogle Scholar
  18. 18.
    Klistorner A, Crewther DP, Crewther SG (1997) Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vis Res 37:2161–2169CrossRefGoogle Scholar
  19. 19.
    Gomes BD, Souza GS, Rodrigues AR, Saito CA, Silveira LCL, da Silva Filho M (2006) Normal and dichromatic color discrimination measured with transient visual evoked potential. Vis Neurosci 23:617–627CrossRefGoogle Scholar
  20. 20.
    Souza GS, Gomes BD, Saito CA, da Silva Filho M, Silveira LCL (2007) Spatial luminance contrast sensitivity measured with transient VEP: comparison with psychophysics and evidence of multiple mechanisms. Investig Ophthalmol Vis Sci 48:3396–3404CrossRefGoogle Scholar
  21. 21.
    Araújo CS, Souza GS, Gomes BD, Silveira LCL (2013) Visual evoked cortical potential (VECP) elicited by sinusoidal gratings controlled by pseudo-random stimulation. PLoS ONE.  https://doi.org/10.1371/journal.pone.0070207 Google Scholar
  22. 22.
    Risuenho BBO, Miquilini L, Lacerda EMCB, Silveira LCL, Souza GS (2015) Cortical responses elicited by luminance and compound stimuli modulated by pseudo-random sequences: comparison between normal trichromats and congenital red–green color blinds. Front Psychol.  https://doi.org/10.3389/fpsyg.2015.00053 Google Scholar
  23. 23.
    Suttle CM, Harding GFA (1999) Morphology of transient VEPs to luminance and chromatic pattern onset and offset. Vis Res 39:1577–1584CrossRefGoogle Scholar
  24. 24.
    Regan D, Spekreijse H (1974) Evoked potential indications of colour blindness. Vis Res 14:89–95CrossRefGoogle Scholar
  25. 25.
    Kulikowski JJ, Robson AG, McKeefry DJ (1996) Specificity and selectivity of chromatic visual evoked potentials. Vis Res 36:3397–3401CrossRefGoogle Scholar
  26. 26.
    Kulikowski JJ, Robson AG, Murray IJ (2002) Scalp VEPs and intra-cortical responses to chromatic and achromatic stimuli in primates. Doc Ophthalmol 105:243–279CrossRefGoogle Scholar
  27. 27.
    Gerth C, Delahunt PB, Crognale MA, Werne R, John S (2003) Topography of the chromatic pattern-onset VEP. J Vis 3:171–182CrossRefGoogle Scholar
  28. 28.
    Regan BC, Reffin JP, Mollon JD (1994) Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vis Res 34:1279–1299CrossRefGoogle Scholar
  29. 29.
    Souza GS, Malone FL, Crawford TL, Miquilini L, Salomão RC, Guimarães DL, Ventura DF, Fitzgerald ME, Silveira LC (2014) Low number of luminance levels in the luminance noise increases color discrimination thresholds estimated with pseudoisochromatic stimuli. Front Psychol.  https://doi.org/10.3389/fpsyg.2014.01291 Google Scholar
  30. 30.
    Linhares JM, João CA, Silva ED, de Almeida VM, Santos JL, Álvaro L, Nascimento SM (2016) Assessing the effects of dynamic luminance contrast noise masking on a color discrimination task. J Opt Soc Am 33(3):A178–A183.  https://doi.org/10.1364/JOSAA.33.00A178 CrossRefGoogle Scholar
  31. 31.
    Méndez IC, Martín A, Charmichael T, Jacob MM, Lacerda EMCB, Gomes BD, Fitzgerald MEC, Ventura DF, Silveira LCL, O’Donell BM, Souza GS (2016) Color discrimination is affected by modulation of luminance noise in pseudoisochromatic stimuli. Front Psychol 7:1006Google Scholar
  32. 32.
    Porciatti V, Sartucci F (1999) Normative data for onset VEPs to red-green and blue–yellow chromatic contrast. Clin Neurophysiol 110:772–781CrossRefGoogle Scholar
  33. 33.
    Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Vaegan (2010) Visual evoked potentials standard. Doc Ophthalmol 108:115–123CrossRefGoogle Scholar
  34. 34.
    Berninger TA, Arden GB, Hogg CR, Frumkes T (1989) Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. Br J Ophthalmol 73:502–511CrossRefGoogle Scholar
  35. 35.
    Morrone MC, Burr DC, Fiorentini A (1993) Development of infant contrast sensitivity to chromatic stimuli. Vis Res 33:2535–2552CrossRefGoogle Scholar
  36. 36.
    Rabin J, Switkes E, Crognale M, Schneck ME, Adams AJ (1994) Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing. Vis Res 34:2657–2671CrossRefGoogle Scholar
  37. 37.
    Arakawa K, Tobimatsu S, Tomoda H, Kira J, Kato M (1999) The effect of spatial frequency on chromatic and achromatic steady-state visual evoked potentials. Clin Neurophysiol 110:1959–1964CrossRefGoogle Scholar
  38. 38.
    Barboni MTS, Gomes BD, Souza GS, Rodrigues AR, Ventura DF, Silveira LCL (2013) Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics. Braz J Med Biol Res 46:154–163CrossRefGoogle Scholar
  39. 39.
    Mckeefry DJ, Russell MHA, Murray IJ, Kulikowski JJ (1996) Amplitude and phase variations of harmonic components in human achromatic and chromatic VEPs. Vis Neurosci 13:639–653CrossRefGoogle Scholar
  40. 40.
    Kulikowski JJ, Murray IJ, Parry NRA (1989) Electrophysiological correlates of chromatic-opponent and achromatic stimulation in man. In: Drum B, Verriest E (eds) Colour vision deficiencies IX. Academic, Dordrecht, pp 145–153CrossRefGoogle Scholar
  41. 41.
    Gomes BD, Souza GS, Lima MG, Rodrigues AR, Saito CA, da Silva Filho M, Silveira LCL (2008) Color discrimination ellipses of trichromats measured with transient and steady-state visual evoked potentials. Vis Neurosci 25:333–339CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Railson Cruz Salomão
    • 1
    • 2
  • Isabelle Christine Vieira da Silva Martins
    • 1
  • Bárbara Begot Oliveira Risuenho
    • 1
  • Diego Leite Guimarães
    • 2
  • Luiz Carlos Lima Silveira
    • 1
    • 2
    • 3
  • Dora Fix Ventura
    • 4
  • Givago Silva Souza
    • 1
    • 2
  1. 1.Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  2. 2.Núcleo de Medicina TropicalUniversidade Federal do ParáBelémBrazil
  3. 3.Universidade CEUMASão LuizBrazil
  4. 4.Universidade de São PauloSão PauloBrazil

Personalised recommendations