Advertisement

Ramanujan graphs and expander families constructed from p-ary bent functions

  • Jong Yoon Hyun
  • Jungyun Lee
  • Yoonjin LeeEmail author
Article
  • 25 Downloads

Abstract

We present a method for constructing an infinite family of non-bipartite Ramanujan graphs. We mainly employ p-ary bent functions of \((p-1)\)-form for this construction, where p is a prime number. Our result leads to construction of infinite families of expander graphs; this is due to the fact that Ramanujan graphs play as base expanders for constructing further expanders. For our construction we directly compute the eigenvalues of the Ramanujan graphs arsing from p-ary bent functions. Furthermore, we establish a criterion on the regularity of p-ary bent functions in m variables of \((p-1)\)-form when m is even. Finally, using weakly regular p-ary bent functions of \(\ell \)-form, we find (amorphic) association schemes in a constructive way; this resolves the open case that \(\ell = p-1\) for \(p >2\) for finding (amorphic) association schemes.

Keywords

Ramanujan graph p-ary bent function Expanders (amorphic)association scheme 

Mathematics Subject Classification

Primary 05E30 Secondary 11T71 94C10 

Notes

Acknowledgements

J.Y. Hyun was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1D1A1B05030707), J. Lee by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A6A3A11030486) and 2019 Research Grant from Kangwon National University, and Y. Lee by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574). We express our gratitude to the reviewers for their very helpful comments, which lead to improvement of the exposition of this paper.

References

  1. 1.
    Alon N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arias de Reyna J.: Finite fields and Ramanujan graphs. J. Combin. Theory Ser. B 70(2), 259–264 (1997).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bibak K., Kapron B.M., Srinivasan V.: The Cayley graphs associated with some quasi-perfect Lee codes are Ramanujan graphs. IEEE Trans. Inf. Theory 62(11), 6355–6358 (2016).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brouwer A.: Web database of strongly regular graphs. https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.
  5. 5.
    Chee Y.M., Tan Y., Zhang X.D.: Strongly regular graphs constructed from \(p\)-ary bent functions. J. Algebr. Combin. 34(2), 251–266 (2011).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chiu P.: Cubic Ramanujan graphs. Combinatorica 12, 275–285 (1992).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007).Google Scholar
  8. 8.
    Davidoff G., Sarnak P., Valette A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs. Cambridge University Press, Cambridge (2003).CrossRefGoogle Scholar
  9. 9.
    Godsil C.D.: Algebraic Combinatorics. Chapman & Hall/CRC, Boca Raton (1993).zbMATHGoogle Scholar
  10. 10.
    Goldreich O., Impagliazzo R., Levin L., Venkatesan R., Zuckerman D.: Security preserving amplification of hardness. In: 31st Annual Symposium on Foundations of Computer Science, vol. I (1990), IEEE Computer Society Press, Los Alamitos, CA, pp. 318–326. Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory 55(11), 5272–5283 (2009).Google Scholar
  11. 11.
    Hoory S., Linial N., Wigderson A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hyun J.Y., Lee Y.: Characterization of \(p\)-ary bent functions in terms of strongly regular graphs. IEEE Trans. Inf. Theory 65(1), 676–684 (2019).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kalton N.J., Roberts J.W.: Uniformly exhaustive submeasures and nearly additive set functions. Trans. Am. Math. Soc. 278(2), 803–816 (1983).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Krebs M., Shaheen A.: Expander families and Cayley Graphs: A Beginner’s Guide. Oxford University Press, Oxford (2011).zbMATHGoogle Scholar
  15. 15.
    Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lubotzky A.: Expander graphs in pure and applied mathematics. Bull. Am. Math. Soc. 49(1), 113–162 (2012).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lubotzky A., Phillips R., Sarnak P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4(3), 221–261 (1994).MathSciNetCrossRefGoogle Scholar
  19. 19.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998).zbMATHGoogle Scholar
  20. 20.
    Marcus A.W., Spielman D.A., Srivastava N.: Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. Math. (2) 182(1), 307–325 (2015).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Margulis G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Probl. Inf. Transm. 24(1), 39–46 (1988).MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mesnager S., Tang C., Qi Y.: 2-correcting Lee codes: (quasi)-perfect spectral conditions and some constructions. IEEE Trans. Inf. Theory 64(4), part 2, 3031–3041 (2018).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Morgenstern M.: Existence and explicit constructions of \(q+1\) regular Ramanujan graphs for every prime power \(q\). J. Combin. Theory Ser. B 62(1), 44–62 (1994).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pippenger N.: Sorting and selecting in rounds. SIAM J. Comput. 16(6), 1032–1038 (1987).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pott A., Tan Y., Feng T., Ling S.: Association schemes arising from bent functions. Des. Codes Cryptogr. 59(1–3), 319–331 (2011).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Reingold O., Vadhan S., Wigderson A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. Math. (2) 155(1), 157–187 (2002).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sipser M., Spielman D.A.: Expander codes. IEEE Trans. Inf. Theory 42(6), part 1, 1710–1722 (1996).MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tan Y., Pott A., Feng T.: Strongly regular graphs associated with ternary bent functions. J. Combin. Theory Ser. A 117(6), 668–682 (2010).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tang C., Li N., Qi Y., Zhou Z., Helleseth T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016).MathSciNetCrossRefGoogle Scholar
  30. 30.
    van Dam E.R.: Strongly regular decompositions of the complete graph. J. Algebr. Combin. 17(2), 181–201 (2003).MathSciNetCrossRefGoogle Scholar
  31. 31.
    Williamson C.: Spectral Graph Theory, Expanders, and Ramanujan Graphs. University of Washington (2014). https://sites.math.washington.edu/~morrow/papers/chris-thesis.pdf.
  32. 32.
    Zinovev V.A., Ericson T.: Fourier-invariant pairs of partitions of finite abelian groups, and association schemes. Probl. Inf. Transm. 45(3), 221–231 (2009).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Konkuk UniversityChungju-siSouth Korea
  2. 2.Department of Mathematics EducationKangwon National UniversityChuncheon-siSouth Korea
  3. 3.Department of MathematicsEwha Womans UniversitySeoulSouth Korea

Personalised recommendations