Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 12, pp 2979–2999 | Cite as

New rank codes based encryption scheme using partial circulant matrices

  • Terry Shue Chien LauEmail author
  • Chik How Tan
Article
  • 55 Downloads

Abstract

We propose a new rank metric code based encryption based on the hard problem of rank syndrome decoding problem. We consider a generator matrix for Gabidulin codes in the form of k-partial circulant matrix. We distort the matrix G by adding it with another random k-partial circulant matrix and multiplying the product with a random circulant matrix. We also convert our encryption into an IND-CCA2 secured encryption scheme under assumption of Rank Syndrome Decoding problem. Our encryption has the smallest key size (of 4.306 KB) at 256-bit security level as compared to all the other rank code based encryption schemes with zero decryption failure and hidden structure for the decodable codes.

Keywords

Code-based cryptography McEliece Public-key encryption Provable security 

Mathematics Subject Classification

94B05 94A60 

Notes

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions which have greatly improved this manuscript.

References

  1. 1.
    Aguilar C., Blazy O., Deneuville J., Gaborit P., Zémore G.: Effcient encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–3943 (2018).CrossRefGoogle Scholar
  2. 2.
    Aragon A., Gaborit P., Hauteville A., Tillich J.-P.: A new algorithm for solving the rank syndrome decoding problem. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2018), pp. 2421–2425 (2018).Google Scholar
  3. 3.
    Bellare M., Rogaway P.: Optimal asymmetric encryption. In: Proceedings of the 13th Annual International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT 1994), pp. 92–111 (1995).CrossRefGoogle Scholar
  4. 4.
    Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on reducible rank codes. In: Proceedings of Progress in Cryptology (INDOCRYPT 2004), pp. 218–229 (2004).CrossRefGoogle Scholar
  5. 5.
    Berlekamp E., McEliece R., Tilborg H.V.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chalkley R.: Circulant matrices and algebraic equations. Math. Mag. 48(2), 73–80 (1975).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Faugère J.-C., Levy-dit-Vehel F., Perret L.: Cryptanalysis of MinRank. In: Proceedings of Advances in Cryptology (CRYPTO 2008), pp. 280–296 (2008).Google Scholar
  8. 8.
    Fujisaki E., Okamoto T.: Secure integration of asymmetric and symmetric encryption schemes. In: Proceedings of Advances in Cryptology (CRYPTO 1999), pp. 535–554 (1999).CrossRefGoogle Scholar
  9. 9.
    Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Inf. 21(1), 3–16 (1985).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gabidulin E.M., Loidreau P.: Subfield subcodes of maximal rank distance codes. In: Proceedings of 7th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2000), pp. 151–156 (2000).Google Scholar
  11. 11.
    Gabidulin E.M., Ourivski A.V.: Modified GPT PKC with right scrambler. Electron. Notes Discret. Math. 6, 168–177 (2001).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gabidulin E.M., Paramonov A.V., Tretjakov O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT 1991), pp. 482–489 (1991).Google Scholar
  13. 13.
    Gabidulin E.M., Ourivski A.V., Honary B., Ammar B.: Reducible rank codes and their applications to cryptography. IEEE Trans. Inf. Theory 49(12), 3289–3293 (2003).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gabidulin E.M., Rashwan H., Honary B.: On improving security of GPT cryptosystems. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2009), pp. 1110–1114 (2009).Google Scholar
  15. 15.
    Gaborit P., Ruatta O., Schrek J., Zémor G.: New results for rank-based cryptography. In: Proceedings of Progress in Cryptology (AFRICACRYPT 2014), pp. 1–12 (2014).Google Scholar
  16. 16.
    Gaborit P., Ruatta O., Schrek J.: On the complexity of the rank syndrome decoding problem. Proc. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gaborit P., Zémor G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gaborit P., Hauteville A., Phan D.H., Tillich J.-P.: Identity-based encryption from codes with Rank Metric. In: Proceedings of Advances in Cryptology (CRYPTO 2017), pp. 194–224 (2017).CrossRefGoogle Scholar
  19. 19.
    Galvez L., Kim J., Kim M.J., Kim Y., Lee N.: McNie: compact McEliece-Niederreiter cryptosystem. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip (2017). Accessed 27 Feb 2018.
  20. 20.
    Gibson J.K.: Severely denting the Gabidulin version of the McEliece public-key cryptosystem. Des. Codes Cryptogr. 6, 37–45 (1995).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Goubin L., Courtois N.T.: Cryptanalysis of the TTM cryptosystem. In: Proceedings of Advances in Cryptology (ASIACRYPT 2000), pp. 44–57 (2000).CrossRefGoogle Scholar
  22. 22.
    Hauteville A., Tillich J.-P.: New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem. In: Proceedings of IEEE International Symposium on Information (ISIT 2015), pp. 2747–2751 (2015).Google Scholar
  23. 23.
    Horlemann-Trautmann A., Marshall K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Horlemann-Trautmann A., Marshall K., Rosenthal J.: Extension of overbeck’s attack for Gabidulin based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340 (2018).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kobara K., Imai H.: Semantically secure McEliece public-key cryptosystems-conversions for McEliece PKC. In: Proceedings of Public-Key Cryptography (PKC 2001), pp. 19–35 (2001).CrossRefGoogle Scholar
  26. 26.
    Lau T.S.C., Tan C.H.: A new technique in rank metric code-based encryption. Cryptography 2(4), 32 (2018).CrossRefGoogle Scholar
  27. 27.
    Lau T.S.C., Tan C.H.: Key recovery attack on McNie based on low rank parity check codes and its reparation. In: Proceedings of Advances in Information and Computer Security (IWSEC 2018), pp. 19–34 (2018).CrossRefGoogle Scholar
  28. 28.
    Levy-dit-Vehel F., Perret L.: Algebraic decoding of rank metric codes. In: Proceedings of Yet Another Conference on Cryptography (YACC 2006), pp. 142–152 (2006).Google Scholar
  29. 29.
    Loidreau P.: Designing a rank metric based McEliece cryptosystem. In: Proceedings of the Third International Conference on Post-Quantum Cryptography (PQCrypto 2010), pp. 142–152 (2010).CrossRefGoogle Scholar
  30. 30.
    Loidreau P.: A new rank metric codes based encryption scheme. In: Proceedings of the 8th International Conference on Post-Quantum Cryptography (PQCrypto 2017), pp. 3–17 (2017).CrossRefGoogle Scholar
  31. 31.
    McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report 42-44, Jet Propulsion Laboratory, pp. 114–116 (1978).Google Scholar
  32. 32.
    Misoczki R., Tillich J.-P., Sendrier N., Barreto P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2013), pp. 2069–2073 (2013).Google Scholar
  33. 33.
    Ore O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584 (1933).MathSciNetCrossRefGoogle Scholar
  34. 34.
    Otmani A., Kalachi H.T., Ndjeya S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018).MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ourivski A.V., Gabidulin E.M.: Column scrambler for the GPT cryptosystem. Discret. Appl. Math. 128, 207–221 (2003).MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ourivski A.V., Johansson T.: New technique for decoding codes in the rank metric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002).MathSciNetCrossRefGoogle Scholar
  37. 37.
    Overbeck R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Pointcheval D.: Chosen-ciphertext security for any one-way cryptosystem. In: Proceedings of Public Key Cryptography (PKC 2000), pp. 129–146 (2000).CrossRefGoogle Scholar
  39. 39.
    Rashwan H., Gabidulin E.M., Honary B.: A smart approach for GPT cryptosystem based on rank codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2010), pp. 2463–2467 (2010).Google Scholar
  40. 40.
    Wachter-Zeh A., Afanassiev V., Sidorenko V.: Fast decoding of Gabidulin codes. Des. Codes Cryptogr. 66, 57–73 (2013).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore

Personalised recommendations