Designs, Codes and Cryptography

, Volume 87, Issue 12, pp 2967–2978 | Cite as

On the geometry of full points of abstract unitals

  • Dávid Mezőfi
  • Gábor P. NagyEmail author


The concept of full points of abstract unitals has been introduced by Korchmáros, Siciliano and Szőnyi as a tool for the study of projective embeddings of abstract unitals. In this paper we give a detailed description of the combinatorial and geometric structure of the sets of full points in abstract unitals of finite order.


Abstract unital Projective embedding Perspectivity Affinity Full point 

Mathematics Subject Classification

51E20 05B25 



The authors would like to thank the referees for their valuable remarks and suggestions.


  1. 1.
    Bagchi S., Bagchi B.: Designs from pairs of finite fields. I. A cyclic unital \(U(6)\) and other regular Steiner \(2\)-designs. J. Combin. Theory Ser. A 52(1), 51–61 (1989).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bamberg J., Betten A., Praeger C.E., Wassermann A.: Unitals in the Desarguesian projective plane of order 16. J. Stat. Plan. Inference 144, 110–122 (2014).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barlotti A., Strambach K.: The geometry of binary systems. Adv. Math. 49(1), 1–105 (1983).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barwick S., Ebert G.: Unitals in Projective Planes, p. 193. Springer, New York (2008).zbMATHGoogle Scholar
  5. 5.
    Belousov V.D.: Algebraic nets and quasigroups (In Russian), Izdat. “Štiinca”, Kishinev, p. 166 (1971).Google Scholar
  6. 6.
    Betten A., Betten D., Tonchev V.D.: Unitals and codes. Discret. Math. 267(1–3), 23–33 (2003). (Combinatorics 2000 (Gaeta)).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Faina G., Korchmáros G.: A Graphic Characterization of Hermitian Curves. Ann. Discrete Math, vol. 18, pp. 335–342. North-Holland, Amsterdam (1983).zbMATHGoogle Scholar
  8. 8.
    Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn, p. 555. Oxford University Press, New York (1998).zbMATHGoogle Scholar
  9. 9.
    Keedwell A.D., Dénes J.: Latin Squares and Their Applications, 2nd edn. Elsevier/North-Holland, Amsterdam (2015).zbMATHGoogle Scholar
  10. 10.
    Korchmáros G., Mazzocca F.: Nuclei of point sets of size \(q+1\) contained in the union of two lines in \(PG(2, q)\). Combinatorica 14(1), 63–69 (1994).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Korchmáros G., Nagy G.P., Pace N.: 3-nets realizing a group in a projective plane. J. Algebr. Comb. 39, 939–966 (2014).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Korchmáros G., Siciliano A., Szőnyi T.: Embedding of classical polar unitals in \(PG(2, q^2)\). J. Comb. Theory Ser. A 153, 67–75 (2018).CrossRefGoogle Scholar
  13. 13.
    Krčadinac V.: Some new Steiner \(2\)-designs \(S(2,4,37)\). Ars Combin. 78, 127–135 (2006).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krčadinac V., Nakić A., Pavčević M.O.: The Kramer-Mesner method with tactical decompositions: some new unitals on \(65\) points. J. Comb. Des. 19(4), 290–303 (2011).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lefèvre-Percsy C.: Characterization of Hermitian curves. Arch. Math. (Basel) 39, 476–480 (1982).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mezőfi D., Nagy G.P.: Algorithms and libraries of abstract unitals and their embeddings, Version 0.5 (2018), (GAP package).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary
  2. 2.Department of AlgebraBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations