Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 12, pp 2835–2845 | Cite as

Recursive constructions for s-resolvable t-designs

  • Tran van TrungEmail author
Article
  • 41 Downloads

Abstract

In this paper we investigate simple t-designs having s-resolutions for \(t \ge 3\) and \(1 \le s <t\). The study focuses particularly on recursive construction methods for these designs. One of the results, viewed as the main theorem, presents a general and effective method for finding s-resolvable t-designs, and it also yields statements about large sets of s-designs as by-products. As an example, we show the construction of a 3-resolvable infinite family of simple 4-designs with parameters 4-\((2^n+2,7, 70(2^n-2)/3)\), \(\gcd (n,6)=1\), \(n \ge 5\).

Keywords

s-Resolvable Simple t-design Recursive construction 

Mathematics Subject Classification

05B05 

Notes

References

  1. 1.
    Ajoodani-Namini S.: Extending large sets of \(t\)-designs. J. Comb. Theory A 76, 139–144 (1996).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alltop W.O.: An infinite class of 4-designs. J. Comb. Theory A 6, 320–322 (1969).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976).CrossRefGoogle Scholar
  4. 4.
    Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefGoogle Scholar
  5. 5.
    Betten A., Laue R., Molodtsov S., Wassermann A.: Steiner systems with automorphism groups \({PSL}(2,71)\), \({PSL}(2,83)\), and \({P\Sigma L}(2,3^5)\). J. Geom. 67, 35–41 (2000).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bierbrauer J.: A new family of 4-designs. Graphs Comb. 11, 209–211 (1995).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bierbrauer J.: A family of 4-designs with block size 9. Discret. Math. 138, 113–117 (1995).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bierbrauer J.: Some friends of Alltop’s designs \(4\)-\((2^f+1,5,5)\). J. Comb. Math. Comb. Comput. 36, 43–53 (2001).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bierbrauer J., van Trung T.: Shadow and shade of designs \(4\)-\((2^f+1,6,10)\) (unpublished). https://www.uni-due.de/~hx0026/ShadowAndShade.pdf.
  10. 10.
    Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2007).zbMATHGoogle Scholar
  11. 11.
    Cusack C.A., Magliveras S.S.: Semiregular large sets. Des. Codes Cryptogr. 18, 81–87 (1999).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dautović S., Acketa D.M., Mudrinski V.: Non-isomorphic \(4\)-\((48,5,\lambda )\) designs from \(\text{ PSL }(2,47)\). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10, 41–46 (1999).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hartman A.: Halving the complete design. Ann. Discret. Math. 34, 207–224 (1987).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Khosrovshahi G.B., Ajoodani-Namini S.: Combining \(t\)-designs. J. Comb. Theory A 58, 26–34 (1991).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Khosrovshahi G.B., Laue R.: \(t\)-Designs with \(t \ge 3\). In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 79–101. CRC Press, Boca Raton (2007).Google Scholar
  16. 16.
    Kramer E.S., Magliveras S.S., O’Brien E.A.: Some new large sets of \(t\)-designs. Australas. J. Comb. 7, 189–193 (1993).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kreher D.L.: \(t\)-Designs, \(t \ge 3\). In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 1st edn, pp. 47–66. CRC Press, Boca Raton (1996).Google Scholar
  18. 18.
    Laue R., Magliveras S.S., Wassermann A.: New large sets of \(t\)-designs. J. Comb. Des. 9, 40–59 (2001).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Laue R., Omidi G.R., Tayfeh-Rezaie B., Wassermann A.: New large sets of \(t\)-designs with prescribed groups of automorphisms. J. Comb. Des. 15, 210–220 (2007).MathSciNetCrossRefGoogle Scholar
  20. 20.
    Magliveras S.S., Plambeck T.E.: New infinite families of simple \(5\)-designs. J. Comb. Theory A 44, 1–5 (1987).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Teirlinck L.: Non-trivial \(t\)-designs without repeated blocks exist for all \(t\). Discret. Math. 65, 301–311 (1987).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Teirlinck L.: Locally trivial \(t\)-designs and \(t\)-designs without repeated blocks. Discret. Math. 77, 345–356 (1989).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Teirlinck L.: Some new 2-resolvable Steiner quadruple systems. Des. Codes Cryptogr. 4, 5–10 (1994).MathSciNetCrossRefGoogle Scholar
  24. 24.
    van Trung T.: On the existence of an infinite family of simple 5-designs. Math. Z. 187, 285–287 (1984).MathSciNetCrossRefGoogle Scholar
  25. 25.
    van Trung T.: On the construction of \(t\)-designs and the existence of some new infinite families of simple \(5\)-designs. Arch. Math. 47, 187–192 (1986).MathSciNetCrossRefGoogle Scholar
  26. 26.
    van Trung T.: Simple \(t\)-designs: a recursive construction for arbitrary \(t\). Des. Codes Cryptogr. 83, 493–502 (2017).  https://doi.org/10.1007/s10623-016-0238-z.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    van Trung T.: A recursive construction for simple \(t\)-designs using resolutions. Des. Codes Cryptogr. 86, 1185–1200 (2018).  https://doi.org/10.1007/s10623-017-0389-6.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wu Q.: A note on extending \(t\)-designs. Australas. J. Comb. 4, 229–235 (1991).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Experimentelle MathematikUniversität Duisburg-EssenEssenGermany

Personalised recommendations