Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 12, pp 2813–2834 | Cite as

Some (almost) optimally extendable linear codes

  • Claude Carlet
  • Chengju LiEmail author
  • Sihem Mesnager
Article
  • 107 Downloads

Abstract

Side-channel attacks and fault injection attacks are nowadays important cryptanalysis methods on the implementations of block ciphers, which represent huge threats. Direct sum masking (DSM) has been proposed to protect the sensitive data stored in registers against both SCA and FIA. It uses two linear codes \({\mathcal {C}}\) and \({\mathcal {D}}\) whose sum is direct and equals \({\mathbb {F}}_q^n\). The resulting security parameter is the pair \((d({\mathcal {C}})-1,d({{\mathcal {D}}}^\perp )-1)\). For being able to protect not only the sensitive input data stored in registers against SCA and FIA but the whole algorithm (which is required at least in software applications), it is useful to change \(\mathcal C\) and \({\mathcal {D}}\) into \({\mathcal {C}}^\prime \), which has the same minimum distance as \({\mathcal {C}}\), and \({\mathcal {D}}^\prime \), which may have smaller dual distance than \({\mathcal {D}}\). Precisely, \(\mathcal D^\prime \) is the linear code obtained by appending on the right of its generator matrix the identity matrix with the same number of rows. It is then highly desired to construct linear codes \({\mathcal {D}}\) such that \(d({{\mathcal {D}}^\prime }^\perp )\) is very close to \(d({{\mathcal {D}}}^\perp )\). In such case, we say that \({\mathcal {D}}\) is almost optimally extendable (and is optimally extendable if \(d({{\mathcal {D}}^\prime }^\perp )= d({\mathcal {D}}^\perp )\)). In general, it is notoriously difficult to determine the minimum distances of the codes \({\mathcal {D}}^\perp \) and \({{\mathcal {D}}^\prime }^\perp \) simultaneously. In this paper, we mainly investigate constructions of (almost) optimally extendable linear codes from irreducible cyclic codes and from the first-order Reed–Muller codes. The minimum distances of the codes \({\mathcal {D}}, {\mathcal {D}}^\prime , \mathcal D^\perp \), and \({{\mathcal {D}}^\prime }^\perp \) are determined explicitly and their weight enumerators are also given. Furthermore, several families of optimally extendable codes are found (for the second time) among such linear codes.

Keywords

Linear code Reed–Muller code Cyclic code Weight distribution Side-channel attack Fault injection attack 

Mathematics Subject Classification

94B05 94B15 11T71 

Notes

Acknowledgements

The authors are very grateful to the editor and the reviewers for their detailed comments and suggestions that much improved the presentation and quality of this paper.

References

  1. 1.
    Bringer J., Carlet C., Chabanne H., Guilley S., Maghrebi H.: Orthogonal direct summaskinga smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks. In: Naccache D., Sauveron D. (eds.) WISTP, Heraklion, LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014).Google Scholar
  2. 2.
    Carlet C., Daif A., Guilley S., Tavernier C.: Polynomial direct sum masking to protect against both SCA and FIA. To appear in the J. Cryptogr. Eng. (JCEN).Google Scholar
  3. 3.
    Carlet C., Guilley S.: Satatistical properties of side-channel and fault injection attacks using coding theory. Crypt. Commun. 10, 909–933 (2018).CrossRefGoogle Scholar
  4. 4.
    Carlet C., Güneri C., Mesnager S., Özbudak F.: Construction of some codes suitable for both side channel and fault injection attacks. In: Budaghyan L., Rodrguez-Henrquez F. (eds.) Arithmetic of Finite Fields, WAIFI 2018, LNCS, vol. 11321, pp. 95–107. Springer, Cham (2018).zbMATHGoogle Scholar
  5. 5.
    Carlet C., Güneri C., Özbudak F., Özkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64(10), 6583–6589 (2018).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \({\mathbb{F}}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).CrossRefGoogle Scholar
  7. 7.
    Carlet C., Mesnager S., Tang C., Qi Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 2605–2618 (2018).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen B., Liu H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Delsarte P.: On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Inf. Theory 21(5), 575–576 (1975).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313(4), 434–446 (2013).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ding C., Li C., Li N., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dougherty S.T., Kim J.-L., Özkaya B., Sok L., Solè P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2/3), 116–128 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).CrossRefGoogle Scholar
  15. 15.
    Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 9 Mar 2019.
  16. 16.
    Güneri C., Özkaya B., Solé P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2017).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. 86, 2261–2278 (2018).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li C., Yue Q., Li F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014).MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li S., Li C., Ding C., Liu H.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).MathSciNetzbMATHGoogle Scholar
  22. 22.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).zbMATHGoogle Scholar
  23. 23.
    Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mesnager S., Tang C., Qi Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ngo X.T., Bhasin S., Danger J.-L., Guilley S., Najm Z.: Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses. In: IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 82–87 (2015).Google Scholar
  26. 26.
    Shi X., Yue Q., Yang S.: New LCD MDS codes constructed from generalized Reed-Solomon codes. J. Alg. Appl. 1950150 (2018).MathSciNetCrossRefGoogle Scholar
  27. 27.
    van Lint J.H.: Introduction to Coding Theory, 3rd edn. Springer, New York (1999).CrossRefGoogle Scholar
  28. 28.
    Wu Y., Yue Q., Zhu X., Yang S.: Weight enumerators of reducible cyclic codes and their dual codes. Discret. Math. 342(3), 671–682 (2019).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yan H., Liu H., Li C., Yang S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang S., Yao Z.: Complete weight enumerators of a class of linear codes. Discret. Math. 340(4), 729–739 (2017).MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang S., Yao Z., Zhao C.: The weight enumerator of the duals of a class of cyclic codes with three zeros. Appl. Algebra Eng. Commun. Comput. 26(4), 347–367 (2015).MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang S., Yao Z., Zhao C.: The weight distributions of two classes of \(p\)-ary cyclic codes with few weights. Finite Fields Appl. 44, 76–91 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claude Carlet
    • 1
    • 2
    • 3
  • Chengju Li
    • 4
    • 5
    Email author
  • Sihem Mesnager
    • 2
    • 3
    • 6
  1. 1.University of BergenBergenNorway
  2. 2.Department of MathematicsUniversity of Paris VIIISaint-DenisFrance
  3. 3.University of Paris XIII, CNRS, LAGA UMR 7539VilletaneuseFrance
  4. 4.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  5. 5.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  6. 6.Telecom ParisTechParisFrance

Personalised recommendations