Advertisement

Steiner systems \(S(2, 4, \frac{3^m-1}{2})\) and 2-designs from ternary linear codes of length \(\frac{3^m-1}{2}\)

  • Chunming TangEmail author
  • Cunsheng Ding
  • Maosheng Xiong
Article
  • 36 Downloads

Abstract

Coding theory and t-designs have close connections and interesting interplay. In this paper, we first introduce a class of ternary linear codes and study their parameters. We then focus on their three-weight subcodes with a special weight distribution. We determine the weight distributions of some shortened codes and punctured codes of these three-weight subcodes. These shortened and punctured codes contain some codes that have the same parameters as the best ternary linear codes known in the database maintained by Markus Grassl at http://www.codetables.de/. These three-weight subcodes with a special weight distribution do not satisfy the conditions of the Assmus–Mattson theorem and do not admit 2-transitive or 2-homogeneous automorphism groups in general. By employing the theory of projective geometries and projective generalized Reed–Muller codes, we prove that they still hold 2-designs. We also determine the parameters of these 2-designs. This paper mainly confirms some recent conjectures of Ding and Li regarding Steiner systems and 2-designs from a special type of ternary projective codes.

Keywords

Cyclic code Linear code t-design Steiner system 

Mathematics Subject Classification

94B05 94B15 05B05 

Notes

Acknowledgements

The authors are grateful to the reviewers and the editors for their comments and suggestions that improved the quality of this paper.

References

  1. 1.
    Anderson R., Ding C., Helleseth T., Klove T.: How to build robust shared control systems. Des. Codes Cryptogr. 15, 111–124 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Assmus Jr. E.F.: On \(2\)-ranks of Steiner triple systems. Electron. J. Comb. 2(1), 9 (1995).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Assmus Jr. E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).CrossRefzbMATHGoogle Scholar
  4. 4.
    Assmus Jr. E.F., Key J.D.: Polynomial codes and finite geometries. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1269–1343. Elsevier, Amsterdam (1998).Google Scholar
  5. 5.
    Assmus Jr. E.F., Mattson Jr. H.F.: Coding and combinatorics. SIAM Rev. 16, 349–388 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding C.: Codes from Difference Sets. World Scientific, Singapore (2015).Google Scholar
  7. 7.
    Ding C.: Infinite families of 3-designs from a type of five-weight code. Des. Codes Cryptogr. 86, 703–719 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding C.: An infinite family of Steiner systems from cyclic codes. J. Comb. Des. 26, 127–144 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ding C.: Designs from Linear Codes. World Scientific, Singapore (2018).CrossRefGoogle Scholar
  10. 10.
    Ding C., Li C.: Infinite families of 2-designs and 3-designs from linear codes. Discret. Math. 340, 2415–2431 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ding C., Li C., Xia Y.: Another generalization of the binary Reed–Muller codes and its applications. Finite Fields Appl. 53, 144–174 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ding C., Munemasa A., Tonchev V.D.: Bent vectorial functions, codes and designs (2018). arXiv:1808.08487 [math.CO].
  13. 13.
    Hamada N.: On the \(p\)-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hanani H.: Balanced incomplete block designs and related designs. Discret. Math. 11, 255–369 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Harada M., Kitazume M., Munemasa A.: On a \(5\)-design related to an extremal doubly-even self-dual code of length \(72\). J. Comb. Theory Ser. A 107, 143–146 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Harada M., Munemasa A., Tonchev V.D.: A characterization of designs related to an extremal doubly-even self-dual code of length \(48\). Ann. Comb. 9, 189–198 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  18. 18.
    Jungnickel D., Tonchev V.D.: On Bonisoli’s theorem and the block codes of Steiner triple systems. Des. Codes Cryptogr. 86, 449–462 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jungnickel D., Tonchev V.D.: Counting Steiner triple systems with classical parameters and prescribed rank. J. Comb. Theory Ser. A 162, 10–33 (2019).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jungnickel D., Magliveras S.S., Tonchev V.D., Wassermann A.: On classifying Steiner triple systems by their \(3\)-rank. In: Bl”omer J. et al. (eds.), MACIS 2017, LNCS 10693, pp. 295–305 (2017). Springer, BerlinGoogle Scholar
  21. 21.
    Koolen J.H., Munemasa A.: Tight 2-designs and perfect \(1\)-codes in Doob graphs. J. Stat. Plann. Inference 86, 505–513 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li S., Ding C., Xiong M., Ge G.: Narrow-sense BCH codes over \({\rm GF}(q)\) with length \( n=\frac{q^{m}-1}{q-1}\). IEEE Trans. Inf. Theory 63, 7219–7236 (2017).CrossRefzbMATHGoogle Scholar
  23. 23.
    Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).zbMATHGoogle Scholar
  24. 24.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).zbMATHGoogle Scholar
  25. 25.
    Munemasa A., Tonchev V.D.: A new quasi-symmetric \(2\)-\((56,16,6)\) design obtained from codes. Discret. Math. 29, 231–234 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tonchev V.D.: Codes and designs. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1229–1268. Elsevier, Amsterdam (1998).Google Scholar
  27. 27.
    Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tonchev V.D.: Codes. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 677–701. CRC Press, New York (2007).Google Scholar
  29. 29.
    Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52, 206–212 (2006).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and InformationChina West Normal UniversityNanchongChina
  2. 2.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
  3. 3.Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina

Personalised recommendations