On the third greedy weight of 4-dimensional codes

  • Liang Bai
  • Zihui LiuEmail author


The upper bounds on the difference between the third greedy weight and the third generalized Hamming weight of 4-dimensional q-ary codes are obtained by using the finite geometry method. The codes achieving the upper bounds are constructed, and these codes are optimal with respect to the security when they are used in the wire-tap channel of type II with the coset coding scheme.


Wire-tap channel Generalized Hamming weight Greedy weight Finite geometry method 

Mathematics Subject Classification




  1. 1.
    Beelen P., Datta M.: Generalized Hamming weights of affine Cartesian codes. Finite Fields Appl. 51, 130–145 (2018).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen W.D., Kløve T.: The weight hierarchies of \(q\)-ary codes of dimension 4. IEEE Trans. Inf. Theory 42(6), 2265–2272 (1996).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen W.D., Kløve T.: On the Second Greedy Weight for Binary Linear Codes. Lecture Notes in Computer Science, vol. 1719, pp. 131–141. Springer, Berlin (1999).Google Scholar
  4. 4.
    Chen W.D., Kløve T.: On the second greedy weight for linear codes of dimension 3. Discrete Math. 241(1–3), 171–187 (2001).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen W.D., Kløve T.: On the second greedy weight for linear codes of dimension at least 4. IEEE Trans. Inf. Theory 50(2), 354–356 (2004).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dodunekov S., Simonis J.: Codes and projective multisets. Electron. J. Comb. 5(1), 1–23 (1998).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Geil O., Martin S.: Relative generalized Hamming weights of \(q\)-ary Reed–Muller codes. Adv. Math. Commun. 11(3), 503–531 (2017).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hirschfeld J.: Projective Geometries over Finite Fields. Clarendon Press, Oxford (1998).zbMATHGoogle Scholar
  9. 9.
    Jian G.P., Feng R.Q., Wu H.F.: Generalized Hamming weights of three classes of linear codes. Finite Fields Appl. 45, 341–354 (2017).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Johnsen T., Verdure H.: Generalized Hamming weights for almost affine codes. IEEE Tran. Inf. Theory 63(4), 1941–1953 (2017).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kurihara J., Matsumoto R., Uyematsu T.: Relative generalized rank weight of linear codes and its applications to network coding. IEEE Trans. Inf. Theory 61(7), 3912–3936 (2015).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Li F.: A class of cyclotomic linear codes and their generalized Hamming weights. Appl. Algebra Eng. Commun. Comput. (2018) (Online).
  13. 13.
    Li X., Liu Z.H.: On the second relative greedy weight. Cryptogr. Commun. 9(2), 181–197 (2017).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Luo Y., Mitrpant C., Han Vinck A.J., Chen K.F.: Some new characters on the wire-tap channel of type II. IEEE Trans. Inf. Theory 51(3), 1222–1229 (2005).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Sarabia M.G., Camps E., Sarmiento E., Villarreal R.H.: The second generalized Hamming weight of some evaluation codes arising from a projective torus. Finite Fields Appl. 52, 370–394 (2018).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tsfasman M.A., Vladuts S.: Geometric approach to higher weights. IEEE Trans. Inf. Theory 41(6), 1564–1588 (1995).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inf. Theory 37(5), 1412–1418 (1991).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zhang J., Feng K.Q.: Relative generalized Hamming weights of cyclic codes. Finite Fields Appl. 50, 338–355 (2018).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Institute of TechnologyBeijingChina
  2. 2.Beijing Key Laboratory on MCAACI, Department of MathematicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations