On equivalence of cyclic codes, generalization of a quasi-twisted search algorithm, and new linear codes

  • Nuh AydinEmail author
  • Jonathan Lambrinos
  • Oliver VandenBerg


A fundamental problem in coding theory is the explicit construction of linear codes with best possible parameters. A search algorithm (ASR) on certain types of quasi-twisted (QT) codes has been very fruitful to address this challenging problem. In this work, we generalize the ASR algorithm to make it more comprehensive. The generalization is based on code equivalence. As a result of implementing the more general algorithm, we discovered 27 new linear codes over the fields \(\mathbb {F}_q\) for \(q=3,4,5,\) and 7. Further, we prove several useful theoretical results about the equivalence of cyclic codes, constacyclic codes, and QT codes.


Best known linear codes Cyclic codes Constacyclic codes Quasi-twisted codes Equivalence of codes Search algorithms for linear codes 

Mathematics Subject Classification

94B05 94B15 



  1. 1.
    Ackerman R., Aydin N.: New quinary linear codes from quasi-twisted codes and their duals. Appl. Math. Lett. 24(4), 512–515 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aydin N., Murphree J.: New linear codes from constacyclic codes. J. Frankl. Inst. 351(3), 1691–1699 (2014).CrossRefzbMATHGoogle Scholar
  3. 3.
    Aydin N., Siap I.: New quasi-cyclic codes over \({\mathbb{F}}_5\). Appl. Math. Lett. 15(7), 833–836 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aydin N., Siap I., Ray-Chaudhuri D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24(3), 313326 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aydin N,. Asamov T., Gulliver, T.A.: Some open problems on quasi-twisted and related code constructions and good quaternary codes. In: Proceeding of International Symposium on Information Theory Nice, France, pp. 856–860 (2007).Google Scholar
  6. 6.
    Aydin N., Connolly N., Murphree J.: New binary linear codes from quasi-cyclic codes and an augmentation algorithm. Appl. Algebra Eng. Commun. Comput. 28(4), 339–350 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aydin N., Connolly N., Grassl M.: Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Adv. Math. Commun. 11(1), 245–258 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Babai L., Codenotti P., Groshow, J.A., Qiao, Y.: Code equivalence and group isomorphism. In: Proceeding of ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 13951408 (2011).Google Scholar
  9. 9.
    Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).zbMATHGoogle Scholar
  10. 10.
    Chen Z.: Six new binary quasi-cyclic codes. IEEE Trans. Inf. Theory 40(5), 1666–1667 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Daskalov R., Gulliver T.A.: New quasi-twisted quaternary linear codes. IEEE Trans. Inf. Theory 46(7), 2642–2643 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Daskalov R., Hristov P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49(11), 3001–3005 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Daskalov R., Hristov P.: New quasi-twisted degenerate ternary linear codes. IEEE Trans. Inf. Theory 49(9), 2259–2263 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Daskalov R., Hristov P., Metodieva E.: New minimum distance bounds for linear codes over \(GF(5)\). Discret. Math. 275(1), 97–110 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dobson E.: Monomial isomorphisms of cyclic codes. Des. Codes Cryptogr. 76(2), 257–267 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grassl M.: Code tables: bounds on the parameters of codes.
  17. 17.
    Guenda K., Gulliver T.A.: On the equivalence of cyclic and quasi-cyclic codes over finite fields. J. Algebra Comb. Discret. Struct. Appl. 4(3), 261–269 (2017).MathSciNetGoogle Scholar
  18. 18.
    Gulliver T.A., Bhargava V.K.: New good rate \((m1)/pm\) ternary and quaternary quasi-cyclic codes. Des. Codes Cryptogr. 7(3), 223–233 (1996).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Huffman W.C.: The equivalence of two cyclic objects on \(pq\) elements. Discret. Math. 154(1), 103–127 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  21. 21.
    Huffman W.C., Job V., Pless V.: Multipliers and generalized multipliers of cyclic objects and cyclic codes. J. Comb. Theory A 62(2), 183–215 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Leon J.S., Masley J.M., Pless V.: Duadic codes. IEEE Trans. Inf. Theory 30(5), 709–714 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Magma computer algebra system.
  24. 24.
    McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 42–44, 114–116 (1978).Google Scholar
  25. 25.
    Muzychuk M.: A solution of an equivalence problem for semisimple cyclic codes. arXiv:1105.4320v1 (2011).
  26. 26.
    Newhart D.W.: Inequivalent cyclic codes of prime length. IEEE Trans. Inf. Theory 32(5), 703–705 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Petrank E., Roth R.M.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Prange E.: Cyclic Error-Correcting Codes in Two Symbols. Technical Report TN-57-103. Air Force Cambridge Research Center, Cambridge (1957).Google Scholar
  29. 29.
    Prange E.: Some Cyclic Error-Correcting Codes with Simple Decoding Algorithm. Technical Report TN-58-156. Air Force Cambridge Research Center, Cambridge (1958).Google Scholar
  30. 30.
    Sendrier N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sendrier N., Simos D.E.: How easy is code equivalence over \(\mathbb{F}_q\)? In: Proceeding of International Workshop on Coding Theory and Crypt, Bergen, Norway (2013).Google Scholar
  32. 32.
    Sendrier N., Simos D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Gaborit P. (ed.) Post-quantum Cryptography, vol. 7932, pp. 203–216. Springer Lecture Notes in Computer ScienceSpringer, Limoges (2013).CrossRefGoogle Scholar
  33. 33.
    Siap I., Aydin N., Ray-Chaudhuri D.K.: New ternary quasi-cyclic codes with improved minimum distances. IEEE Trans. Inf. Theory 46(4), 1554–1558 (2000).CrossRefzbMATHGoogle Scholar
  34. 34.
    Vardy A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43(6), 1757–1766 (1997).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsKenyon CollegeGambierUSA

Personalised recommendations