Advertisement

The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes

  • Xueying ShiEmail author
  • Qin Yue
  • Yansheng Wu
Article
  • 16 Downloads

Abstract

Classical Bose–Chaudhuri–Hocquenghem (BCH) codes are an important class of cyclic codes in terms of their error-correcting capability. BCH codes that contain their Euclidean (or Hermitian) dual codes have been widely used in constructing quantum stabilizer codes. In this paper, necessary and sufficient conditions on Euclidean and Hermitian dual-containing primitive BCH codes with the maximum designed distance are shown, and necessary conditions on non-narrow-sense primitive BCH codes that do not contain their Euclidean or Hermitian dual codes are given. The results of Euclidean and Hermitian dual-containing primitive BCH codes in (Aly et al. IEEE Trans Inf Theory 53(3):1183–1188, 2007) are extended. Moreover, the dimensions of some non-narrow-sense primitive BCH codes are determined and some quantum codes are constructed.

Keywords

Cyclic code BCH code Dual-containing 

Mathematics Subject Classification

94B15 81P70 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China (No. 61772015), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Nos. KYCX17_0225 and KYCX18_0241), and the Fundamental Research Funds for the Central Universities (No. NZ2018005). The paper is also supported by Foundation of Science and Technology on Information Assurance Laboratory (No. KJ-17-010), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 17KJB110018), and Guangxi Natural Science Foundation(2016GXNSFDA380017). Additionally, the authors are grateful to the Editor and the anonymous referees for their useful comments and suggestions which helped to improve the presentation of this paper.

References

  1. 1.
    Aly S.A., Klappenecker A., Sarvepalli P.K.: Primitive quantum BCH codes over finite fields. IEEE Int. Symp. Inf. Theory 1114–1118 (2006).Google Scholar
  2. 2.
    Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berlekamp E.R.: The enumeration of information symbols in BCH codes. Bell Syst. Tech. J. 46(8), 1861–1880 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Charpin P.: On a class of primitive BCH-codes. IEEE Trans. Inf. Theory 36(1), 222–228 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen B., Ling S., Zhang G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding C., Du X., Zhou Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ding C., Fan C., Zhou Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jin L., Kan H., Wen J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kasami T., Lin S.: Some results on the minimum weight of BCH codes. IEEE Trans. Inf. Theory 18(6), 824–825 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. 86(10), 2261–2278 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li F., Yue Q.: New quantum MDS-convolutional codes derived from constacyclic codes. Mod. Phys. Lett. B (2015).  https://doi.org/10.1142/S0217984915502528
  13. 13.
    Li R., Zuo F., Liu Y., Xu Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(2), 0021–0035 (2013).MathSciNetGoogle Scholar
  14. 14.
    Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Shi X., Yue Q., Zhu X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Steane A.M.: Enlargement of Calderbank-Shor-Steane quantum codes. IEEE. Trans. Inf. Theory 45(7), 2492–2495 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yan H., Liu H., Li C., Yang S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3) (2018)Google Scholar
  18. 18.
    Zhang G., Chen B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 5551–5554 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang T., Ge G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83(3), 503–517 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of CryptologyBeijingPeople’s Republic of China

Personalised recommendations