New lower bounds for permutation arrays using contraction

  • Sergey Bereg
  • Zevi MillerEmail author
  • Luis Gerardo Mojica
  • Linda Morales
  • I. H. Sudborough


A permutation array A is a set of permutations on a finite set \(\Omega \), say of size n. Given distinct permutations \(\pi , \sigma \in \Omega \), we let \(hd(\pi , \sigma ) = |\{ x\in \Omega : \pi (x) \ne \sigma (x) \}|\), called the Hamming distance between \(\pi \) and \(\sigma \). Now let \(hd(A) =\) min\(\{ hd(\pi , \sigma ): \pi , \sigma \in A \}\). For positive integers n and d with \(d\le n\) we let M(nd) be the maximum number of permutations in any array A satisfying \(hd(A) \ge d\). There is an extensive literature on the function M(nd), motivated in part by suggested applications to error correcting codes for message transmission over power lines. A basic fact is that if a permutation group G is sharply k-transitive on a set of size \(n\ge k\), then \(M(n,n-k+1) = |G|\). Motivated by this we consider the permutation groups AGL(1, q) and PGL(2, q) acting sharply 2-transitively on GF(q) and sharply 3-transitively on \(GF(q)\cup \{\infty \}\) respectively. Applying a contraction operation to these groups, we obtain the following new lower bounds for prime powers q satisfying \(q\equiv 1\) (mod 3).
  1. 1.

    \(M(q-1,q-3)\ge (q^{2} - 1)/2\) for q odd, \(q\ge 7\),

  2. 2.

    \(M(q-1,q-3)\ge (q-1)(q+2)/3\) for q even, \(q\ge 8\),

  3. 3.

    \(M(q,q-3)\ge Kq^{2}log(q)\) for some constant \(K>0\) if q is odd.

These results resolve a case left open in a previous paper (Bereg et al. in Des Codes Cryptogr 86(5):1095–1111, 2018), where it was shown that \(M(q-1, q-3) \ge q^{2} - q\) and \(M(q,q-3) \ge q^{3} - q\) for all prime powers q such that \(q\not \equiv 1\) (mod 3). We also obtain lower bounds for M(nd) for a finite number of exceptional pairs nd, by applying this contraction operation to the sharply 4 and 5-transitive Mathieu groups.


Permutation arrays Contraction AGL(1, q) PGL(2, q) 

Mathematics Subject Classification

05A05 05B30 05C25 



  1. 1.
    Alon N.: Independence numbers of locally sparse graphs and a Ramsey type result. Random Struct. Algorithms 9(3), 271–278 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bereg S., Levy A., Sudborough I.H.: Constructing permutation arrays from groups. Des. Codes Cryptogr. 86(5), 1095–1111 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bereg S., Morales L., Sudborough I.H.: Extending permutation arrays: improving MOLS bounds. Des. Codes Cryptogr. 83(3), 661–883 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blake I., Cohen G., Deza M.: Coding with permutations. Inf. Control 43, 1–19 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boya L.S.: Introduction to sporadic groups, proceedings of the workshop “Supersymmetric Quantum Mechanics and Spectral Design”. SIGMA 7, 1–18 (2011).Google Scholar
  6. 6.
    Cameron P.J.: Permutation Groups, vol. 45. Cambridge University Press, Cambridge (1999).CrossRefzbMATHGoogle Scholar
  7. 7.
    Chowla S., Erdos P., Straus E.G.: On the maximal number of pairwise orthogonal Latin squares of a given order. Can. J. Math. 13, 204–208 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Colbourn C.J., Klove T., Ling Alan C.H.: Permutation arrays for powerline communication and mutually orthogonal latin squares. IEEE Trans. Inf. Theory 50(6), 1289–1291 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32, 51–64 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deza M., Vanstone S.A.: Bounds for permutation arrays. J. Stat. Plan. Inference 2(2), 197–209 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de la Torre, D.R., Colbourn, C.J., Ling, A.C.H.: An application of permutation arrays to block ciphers. In: Proceeding of the 31st Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL 145, pp. 5–7 (2000)Google Scholar
  12. 12.
    Dixon J., Mortimer B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer, New York (1996).CrossRefzbMATHGoogle Scholar
  13. 13.
    Dukes P., Sawchuk N.: Bounds on permutation codes of distance four. J. Algebraic Comb. 31, 143–158 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ferreira H.C., Vinck A.J.H.: Interference cancellation with permutation trellis arrays. In: Proceeding of the IEEE Vehicular Technology Conference, Boston, MA pp. 2401–2407 (2000)Google Scholar
  15. 15.
    Frankl P., Deza M.: On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A 22(3), 352–360 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2018)Google Scholar
  17. 17.
    Holt, D.F.: personal communication.Google Scholar
  18. 18.
  19. 19.
    Huczynska S.: Powerline communications and the 36 officers problem. Philos. Trans. R. Soc. Lond. A 364(1849), 34–40 (2003).MathSciNetGoogle Scholar
  20. 20.
    Ivanov A.A.: Mathieu Groups. Cambridge University Press, Cambridge (2018).CrossRefzbMATHGoogle Scholar
  21. 21.
    Janiszczak I., Lempkin W., Ostergard P.R., Staszewski R.: Permutation codes invariant under isometries. Des. Codes Cryptogr. 75(3), 497–507 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash memories. In: Proceeding of the IEEE Symposium Information Theory, pp. 1731–1735 (2008)Google Scholar
  23. 23.
    Jiang, A., Schwartz, M., Bruck, J.: Error-correcting codes for rank modulation. Proceeding of the IEEE Symposium Information Theory, pp. 1736-1740 (2008)Google Scholar
  24. 24.
    Keevash P., Ku C.Y.: A random construction for permutation codes and the covering radius. Des. Codes Cryptogr. 41, 79–86 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mathieu E.: Sur la fonction cinq fois transitive de 24 quantités. J. Math. Pures Appl. (in French) 18, 25–46 (1873).zbMATHGoogle Scholar
  26. 26.
    Pavlidou N., Vinck A.J.H., Yazdani J., Honary B.: Powerline communications: state of the art and future trends. IEEE Commun. Mag. 41(4), 34–40 (2003).CrossRefGoogle Scholar
  27. 27.
    Pommerening, K.: Quadratic equations in finite fields of characteristic 2, unpublished manuscript (2000), English version (2012)Google Scholar
  28. 28.
    Robinson D.J.S.: A Course in the Theory of Groups, vol. 80. Graduate Texts in MathematicsSpringer, New York (1996).Google Scholar
  29. 29.
    Smith D.H., Montemanni R.: A new table of permutation codes. Des. Codes Cryptogr. 63(2), 241–253 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Stinson D.R.: Combinatorial Designs. Springer, Kolkata (2010).Google Scholar
  31. 31.
    Syskin S.A.: Abstract properties of the simple sporadic groups. Russ. Math. Surv. 35, 209–246 (1980).CrossRefzbMATHGoogle Scholar
  32. 32.
    Taslaman, L.: The Mathieu groups, M.S. thesis, Lund University (2009)Google Scholar
  33. 33.
    Thompson, T.: From error-corecting codes through sphere packing to simple groups. Carus Mathematical Monographs 21, Mathematical Association of America (1983)Google Scholar
  34. 34.
    Vinck A.J.H.: Coded modulation for powerline commumnications. AEU Int. J. Electron. Commun. 54, 45–49 (2000).Google Scholar
  35. 35.
    Wang X., Zhang Y., Yang Y., Ge G.: New bounds of permutation codes under Hamming metric and Kendall’s \(\tau \)-metric. Des. Codes Cryptogr. 85(3), 533–545 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sergey Bereg
    • 1
  • Zevi Miller
    • 2
    Email author
  • Luis Gerardo Mojica
    • 1
  • Linda Morales
    • 1
  • I. H. Sudborough
    • 1
  1. 1.Computer Science DepartmentUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of MathematicsMiami UniversityOxfordUSA

Personalised recommendations