Advertisement

Improved Singleton bound on frequency hopping sequences and optimal constructions

  • Xing LiuEmail author
  • Liang Zhou
Article
  • 83 Downloads

Abstract

Frequency hopping (FH) sequences play an important role in FH spread spectrum communication systems. In this paper, a new theoretical bound on the FH sequences with respect to the size of the frequency slot set, the sequence length, the family size, and the maximum periodic Hamming correlation is established. The new bound is tighter than the Singleton bounds on the FH sequences derived by Ding et al. (IEEE Trans Inf Theory 55:3297–3304, 2009) and Yang et al. (IEEE Trans Inf Theory 57:7605–7613, 2011) (first by Sarwate in: Glisic and Leppanen (eds) Code division multiple access communications, Springer, Boston, 1995). In addition, the new bound employes the M\(\ddot{\text {o}}\)bius function. Then, more optimal FH sequence sets are obtained from Reed–Solomon codes. By utilizing the properties of cyclic codes, a new class of optimal FH sequence sets is obtained whose parameters meet the new bound. Further, two new constructions of FH sequence sets are presented. More new FH sequence sets are obtained by choosing proper base sequence sets. Meanwhile, the FH sequence sets constructed are optimal with respect to the new bound.

Keywords

Frequency hopping sequences Peng–Fan bound Singleton bound Hamming correlation Frequency hopping Spread spectrum 

Mathematics Subject Classification

94A55 94B05 

Notes

Acknowledgements

This work was supported by the Postdoctoral Foundation of University of Electronic Science and Technology of China. The material in this paper was presented in part at the Eighth International Conference on Sequences and Their Applications, Melbourne, Australia, November 2014.

References

  1. 1.
    Bao J.J., Ji L.J.: New families of optimal frequency hopping sequence sets. IEEE Trans. Inf. Theory 62, 5209–5224 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chu W., Colbourn C.J.: Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inf. Theory 51, 1139–1141 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chung J.H., Gong G., Yang K.: New families of optimal frequency-hopping sequences of composite lengths. IEEE Trans. Inf. Theory 60, 3688–3697 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chung J.H., Han Y.K., Yang K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 45, 5783–5791 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chung J.H., Yang K.: Optimal frequency-hopping sequences with new parameters. IEEE Trans. Inf. Theory 56, 1685–1693 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding C., Fuji-Hara R., Fujiwara Y., Jimbo M., Mishima M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55, 3297–3304 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ding C., Moisio M.J., Yuan J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53, 2606–2610 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding C., Yang Y., Tang X.H.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 55, 3605–3612 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fan P.Z., Darnell M.: Sequence Design for Communications Applications. Research Studies Press (RSP), John Wiley and Sons, London (1996).Google Scholar
  10. 10.
    Fan P.Z., Lee M.H., Peng D.Y.: New family of hopping sequences for time/frequency-hopping CDMA systems. IEEE Trans. Wirel. Commun. 4, 2836–2842 (2005).CrossRefGoogle Scholar
  11. 11.
    Fuji-Hara R., Miao Y., Mishima M.: Optimal frequency hopping sequences: a combinatorial approach. IEEE Trans. Inf. Theory 50, 2408–2420 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ge G., Miao Y., Yao Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Golomb S.W.: A mathematical theory of discrete classification. In: Proc. 4th London Symp. Information Theory. London, UK, pp. 404–425 (1961).Google Scholar
  14. 14.
    Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005).CrossRefzbMATHGoogle Scholar
  15. 15.
    Golomb S.W., Gordon B., Welch L.R.: Comma-free codes. Can. J. Math. 10, 202–209 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kumar P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory 34, 146–151 (1988).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lam A.W., Sarwate D.V.: Time-hopping and frequency-hopping multiple-access packet communications. IEEE Trans. Commun. 38, 875–888 (1990).CrossRefGoogle Scholar
  18. 18.
    Lempel A., Greenberger H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ling S., Xing C.: Coding Theory: A First Course. Cambridge University Press, Cambridge (2004).CrossRefGoogle Scholar
  20. 20.
    Liu X., Peng D.Y.: Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions. Adv. Math. Commun. 8, 359–373 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu X., Peng D.Y.: Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Adv. Math. Commun. 11, 151–159 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu X., Peng D.Y., Han H.Y.: Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties. Des. Codes Cryptogr. 73, 167–176 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Liu X., Zhou L.: New bound on partial Hamming correlation of low-hit-zone frequency hopping sequences and optimal constructions. IEEE Commun. Lett. 22, 878–881 (2018).CrossRefGoogle Scholar
  24. 24.
    Liu X., Zhou L., Zeng Q.: No-hit-zone frequency hopping sequence sets with respect to aperiodic Hamming correlation. Electron. Lett. 54, 212–213 (2018).CrossRefGoogle Scholar
  25. 25.
    Peng D.Y., Fan P.Z.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50, 2149–2154 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sarwate D.V.: Optimum PN sequences for CDMA systems. In: Glisic S.G., Leppanen P.A. (eds.) Code Division Multiple Access Communications, pp. 53–78. Springer, Boston, MA (1995).CrossRefGoogle Scholar
  27. 27.
    Song H.Y., Reed I.S., Golomb S.W.: On the nonperiodic cyclic equivalent classes of Reed-Solomon codes. IEEE Trans. Inf. Theory 39, 1431–1434 (1993).CrossRefzbMATHGoogle Scholar
  28. 28.
    Udaya P., Siddiqi M.U.: Optimal large linear span frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44, 1492–1503 (1998).CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang Q.: Optimal sets of frequency hopping sequences with large linear spans. IEEE Trans. Inf. Theory 56, 1729–1736 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang Y., Tang X.H., Udaya P., Peng D.Y.: New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory 57, 7605–7613 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zeng X.Y., Cai H., Tang X.H., Yang Y.: A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 58, 4899–4907 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zeng X.Y., Cai H., Tang X.H., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59, 3237–3248 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhou Z.C., Tang X.H., Peng D.Y., Udaya P.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 57, 3831–3840 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology on CommunicationsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.College of Electrical Engineering and Information TechnologySichuan UniversityChengduChina

Personalised recommendations