Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 7, pp 1673–1697 | Cite as

Equiangular tight frames from group divisible designs

  • Matthew FickusEmail author
  • John Jasper
Article
  • 118 Downloads

Abstract

An equiangular tight frame (ETF) is a type of optimal packing of lines in a real or complex Hilbert space. In the complex case, the existence of an ETF of a given size remains an open problem in many cases. In this paper, we observe that many of the known constructions of ETFs are of one of two types. We further provide a new method for combining a given ETF of one of these two types with an appropriate group divisible design (GDD) in order to produce a larger ETF of the same type. By applying this method to known families of ETFs and GDDs, we obtain several new infinite families of ETFs. The real instances of these ETFs correspond to several new infinite families of strongly regular graphs. Our approach was inspired by a seminal paper of Davis and Jedwab which both unified and generalized McFarland and Spence difference sets. Our main result is a combinatorial analog of their algebraic results.

Keywords

Equiangular tight frames Group divisible designs Strongly regular graphs 

Mathematics Subject Classification

42C15 

Notes

Acknowledgements

We thank the editors and the three anonymous reviewers for their comments, all of which were helpful. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This work was partially supported by the Summer Faculty Fellowship Program of the United States Air Force Research Laboratory.

References

  1. 1.
    Abel R.J.R., Greig M.: BIBDs with small block size. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 72–79. CRC Press, Boca Raton (2007).Google Scholar
  2. 2.
    Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007).Google Scholar
  3. 3.
    Azarija J., Marc T.: There is no (75,32,10,16) strongly regular graph. arXiv:1509.05933.
  4. 4.
    Azarija J., Marc T.: There is no (95,40,12,20) strongly regular graph. arXiv:1603.02032.
  5. 5.
    Bajwa W.U., Calderbank R., Mixon D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33, 58–78 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bandeira A.S., Fickus M., Mixon D.G., Wong P.: The road to deterministic matrices with the Restricted Isometry Property. J. Fourier Anal. Appl. 19, 1123–1149 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barg A., Glazyrin A., Okoudjou K.A., Yu W.-H.: Finite two-distance tight frames. Linear Algebra Appl. 475, 163–175 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bodmann B.G., Elwood H.J.: Complex equiangular Parseval frames and Seidel matrices containing \(p\)th roots of unity. Proc. Am. Math. Soc. 138, 4387–4404 (2010).CrossRefzbMATHGoogle Scholar
  9. 9.
    Bodmann B.G., Paulsen V.I., Tomforde M.: Equiangular tight frames from complex Seidel matrices containing cube roots of unity. Linear Algebra Appl. 430, 396–417 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bracken C., McGuire G., Ward H.: New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices. Des. Codes Cryptogr. 41, 195–198 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brouwer A.E.: Strongly regular graphs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 852–868. CRC Press, Boca Raton (2007).Google Scholar
  12. 12.
    Brouwer A.E.: Parameters of strongly regular graphs. http://www.win.tue.nl/~aeb/graphs/srg/.
  13. 13.
    Chang K.I.: An existence theory for group divisible designs. Ph.D. Thesis, The Ohio State University (1976).Google Scholar
  14. 14.
    Chen Y.Q.: On the existence of abelian Hadamard difference sets and a new family of difference sets. Finite Fields Appl. 3, 234–256 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Corneil D., Mathon R. (eds.): Geometry and Combinatorics: Selected Works of J. J. Seidel. Academic Press, New York (1991).Google Scholar
  16. 16.
    Coutinho G., Godsil C., Shirazi H., Zhan H.: Equiangular lines and covers of the complete graph. Linear Algebra Appl. 488, 264–283 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Davis J.A., Jedwab J.: A unifying construction for difference sets. J. Comb. Theory Ser. A 80, 13–78 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans. Inf. Theory 53, 4245–4250 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fickus M., Mixon D.G.: Tables of the existence of equiangular tight frames. arXiv:1504.00253 (2016).
  20. 20.
    Fickus M., Mixon D.G., Tremain J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–1027 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fickus M., Mixon D.G., Jasper J.: Equiangular tight frames from hyperovals. IEEE Trans. Inf. Theory 62, 5225–5236 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fickus M., Jasper J., Mixon D.G., Peterson J.D.: Tremain equiangular tight frames. J. Comb. Theory Ser. A 153, 54–66 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fickus M., Jasper J., Mixon D.G., Peterson J.D.: Hadamard equiangular tight frames. arXiv:1703.05353.
  24. 24.
    Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Equiangular tight frames with centroidal symmetry. Appl. Comput. Harmon. Anal. (to appear).Google Scholar
  25. 25.
    Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E.: Polyphase equiangular tight frames and abelian generalized quadrangles. Appl. Comput. Harmon. Anal. (to appear).Google Scholar
  26. 26.
    Fuchs C.A., Hoang M.C., Stacey B.C.: The SIC question: history and state of play. Axioms 6, 21 (2017).CrossRefGoogle Scholar
  27. 27.
    Ge G.: Group divisible designs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 255–260. CRC Press, Boca Raton (2007).Google Scholar
  28. 28.
    Godsil C.D.: Krein covers of complete graphs. Aust. J. Comb. 6, 245–255 (1992).MathSciNetzbMATHGoogle Scholar
  29. 29.
    Goethals J.M., Seidel J.J.: Strongly regular graphs derived from combinatorial designs. Can. J. Math. 22, 597–614 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gordon D.: La Jolla covering repository. https://www.ccrwest.org/diffsets.html.
  31. 31.
    Grassl M., Scott A.J.: Fibonacci-Lucas SIC-POVMs. J. Math. Phys. 58, 122201 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Holmes R.B., Paulsen V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Iverson J.W., Jasper J., Mixon D.G.: Optimal line packings from nonabelian groups. arXiv:1609.09836.
  34. 34.
    Jasper J., Mixon D.G., Fickus M.: Kirkman equiangular tight frames and codes. IEEE Trans. Inf. Theory 60, 170–181 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Jungnickel D., Pott A., Smith K.W.: Difference sets. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 419–435. CRC Press, Boca Raton (2007).Google Scholar
  36. 36.
    Lamken E.R., Wilson R.M.: Decompositions of edge-colored complete graphs. J. Comb. Theory Ser. A 89, 149–200 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lemmens P.W.H., Seidel J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mathon R., Rosa A.: \(2-(v, k,\lambda )\) designs of small order. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 25–58. CRC Press, Boca Raton (2007).Google Scholar
  39. 39.
    MacNeish H.F.: Euler squares. Ann. Math. 23, 221–227 (1922).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    McFarland R.L.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A 15, 1–10 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    McGuire G.: Quasi-symmetric designs and codes meeting the Grey-Rankin bound. J. Comb. Theory Ser. A 78, 280–291 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mohácsy H.: The asymptotic existence of group divisible designs of large order with index one. J. Comb. Theory Ser. A 118, 1915–1924 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Renes J.M.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426, 497–501 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Seidel J.J.: A survey of two-graphs. Coll. Int. Teorie Combin., Atti dei Convegni Lincei, vol. 17, pp. 481–511. Accademia Nazionale dei Lincei, Rome (1976).Google Scholar
  46. 46.
    Spence E.: A family of difference sets. J. Comb. Theory Ser. A 22, 103–106 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Strohmer T.: A note on equiangular tight frames. Linear Algebra Appl. 429, 326–330 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Strohmer T., Heath R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Sustik M.A., Tropp J.A., Dhillon I.S., Heath R.W.: On the existence of equiangular tight frames. Linear Algebra Appl. 426, 619–635 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Szöllősi F.: All complex equiangular tight frames in dimension 3. arXiv:1402.6429.
  51. 51.
    Tropp J.A.: Complex equiangular tight frames. Proc. SPIE 5914, 591401/1–11 (2005).Google Scholar
  52. 52.
    Tropp J.A., Dhillon I.S., Heath Jr. R.W., Strohmer T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51, 188–209 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    van Lint J.H., Seidel J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335–348 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Waldron S.: On the construction of equiangular frames from graphs. Linear Algebra Appl. 431, 2228–2242 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Welch L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20, 397–399 (1974).CrossRefzbMATHGoogle Scholar
  57. 57.
    Wilson R.M.: An existence theory for pairwise balanced designs I. Composition theorems and morphisms. J. Comb. Theory Ser. A 13, 220–245 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Xia P., Zhou S., Giannakis G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51, 1900–1907 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Zauner G.: Quantum designs: foundations of a noncommutative design theory. Ph.D. Thesis, University of Vienna (1999).Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsAir Force Institute of TechnologyWright-Patterson AFBUSA
  2. 2.Department of Mathematics and StatisticsSouth Dakota State UniversityBrookingsUSA

Personalised recommendations