Designs, Codes and Cryptography

, Volume 87, Issue 2–3, pp 463–480 | Cite as

Linear codes from weakly regular plateaued functions and their secret sharing schemes

  • Sihem Mesnager
  • Ferruh Özbudak
  • Ahmet SınakEmail author
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography


Linear codes, the most significant class of codes in coding theory, have diverse applications in secret sharing schemes, authentication codes, communication, data storage devices and consumer electronics. The main objectives of this paper are twofold: to construct three-weight linear codes from plateaued functions over finite fields, and to analyze the constructed linear codes for secret sharing schemes. To do this, we generalize the recent contribution of Mesnager given in (Cryptogr Commun 9(1):71–84, 2017). We first introduce the notion of (non)-weakly regular plateaued functions over \({{\mathbb {F}}}_p\), with p being an odd prime. We next construct three-weight linear p-ary (resp. binary) codes from weakly regular p-ary plateaued (resp. Boolean plateaued) functions and determine their weight distributions. We finally observe that the constructed linear codes are minimal for almost all cases, which implies that they can be directly used to construct secret sharing schemes with nice access structures. To the best of our knowledge, the construction of linear codes from plateaued functions over \({{\mathbb {F}}}_p\), with p being an odd prime, is studied in this paper for the first time in the literature.


Binary linear codes Linear p-ary codes Secret sharing schemes Weakly regular plateaued functions Weight distribution 

Mathematics Subject Classification

94A60 14G50 11T71 



The authors extend thanks to the Editor and anonymous reviewers for their valuable comments and suggestions, which improved the quality and presentation of the manuscript. The third author is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Program No: BİDEB 2214/A.


  1. 1.
    Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inform. Theory 44(5), 2010–2017 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blakley G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313–317 (1979).Google Scholar
  3. 3.
    Bosma W., Cannon J., Playoust C.: The magma algebra system I: the user language. J. Symb. Comput. 24(3), 235–265 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inform. Theory 49(8), 2004–2019 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Canteaut A., Charpin P., Kyureghyan G.M.: A new class of monomial bent functions. Finite Fields Appl. 14(1), 221–241 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carlet C., Ding C., Yuan J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inform. Theory 51(6), 2089–2102 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Çeşmelioğlu A., Meidl W.: A construction of bent functions from plateaued functions. Des. Codes Cryptogr. 66, 231–242 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding C.: A construction of binary linear codes from boolean functions. Discret. Math. 339(9), 2288–2303 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5835–5842 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ding C., Yuan J.: Covering and secret sharing with linear codes. DMTCS 2731, 11–25 (2003).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52(5), 2018–2032 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Helleseth T., Kholosha A.: New binomial bent functions over the finite fields of odd characteristic. In 2010 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1277–1281. IEEE (2010).Google Scholar
  13. 13.
    Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. arXiv:1803.09988 (2018).
  14. 14.
    Hyun J.Y., Lee J., Lee Y.: Explicit criteria for construction of plateaued functions. IEEE Trans. Inform. Theory 62(12), 7555–7565 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory, 84th edn. Springer, Berlin (2013).zbMATHGoogle Scholar
  16. 16.
    Li S.: The minimum distance of some narrow-sense primitive BCH codes. SIAM J. Discret. Math. 31(4), 2530–2569 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lidl R., Niederreiter H.: Finite Tields, 20th edn. Cambridge University Press, Cambridge (1997).Google Scholar
  18. 18.
    McEliece R.J., Sarwate D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mesnager S.: Characterizations of plateaued and bent functions in characteristic p. In: International Conference on Sequences and Their Applications, pp. 72–82. Springer, New York (2014).Google Scholar
  20. 20.
    Mesnager S.: Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun. 9(1), 71–84 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mesnager S., Özbudak F., Sınak A.: Results on characterizations of plateaued functions in arbitrary characteristic. In: International Conference on Cryptography and Information Security in the Balkans, pp. 17–30. Springer, New York (2015).Google Scholar
  22. 22.
    Mesnager S., Özbudak F., Sınak A.: A new class of three-weight linear codes from weakly regular plateaued functions. In: Proceedings of the Tenth International Workshop on Coding and Cryptography (WCC) (2017).Google Scholar
  23. 23.
    Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).CrossRefzbMATHGoogle Scholar
  24. 24.
    Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tang C., Li N., Qi Y., Zhou Z., Helleseth T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inform. Theory 62(3), 1166–1176 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zheng Y., Zhang X.-M.: Plateaued functions. In: ICICS, vol. 99, pp. 284–300. Springer, New York (1999).Google Scholar
  27. 27.
    Zhou Z., Li N., Fan C., Helleseth T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81(2), 283–295 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics at University of Paris VIII, LAGA, UMR 7539, CNRS at University of Paris XIII and Telecom ParisTechParisFrance
  2. 2.Department of Mathematics, Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  4. 4.Department of Mathematics and Computer SciencesNecmettin Erbakan UniversityKonyaTurkey
  5. 5.LAGA, UMR 7539, CNRS at Universities of Paris VIII and XIIIParisFrance

Personalised recommendations