Designs, Codes and Cryptography

, Volume 87, Issue 2–3, pp 393–416 | Cite as

The graph structure of Chebyshev polynomials over finite fields and applications

  • Claudio Qureshi
  • Daniel PanarioEmail author
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography


We completely describe the functional graph associated to iterations of Chebyshev polynomials over finite fields. Then, we use our structural results to obtain estimates for the average rho length, average number of connected components and the expected value for the period and preperiod of iterating Chebyshev polynomials.


Chebyshev polynomials Dynamical systems over finite fields Permutation polynomials over finite fields 

Mathematics Subject Classification

12E20 11T06 11T71 



Claudio Qureshi was supported by Fapesp grant 201526420-1 and the second author by NSERC of Canada. Most of this work was done while the Claudio Qureshi was visiting Carleton University. This author wishes to thank the Fields Institute for funding this visit.


  1. 1.
    Blum L., Blum M., Shub M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2), 364–383 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Charpin P., Mesnager S., Sarkar S.: Dickson polynomials that are involutions. Contemporary Developments in Finite Fields and Applications, pp. 22–47. World Scientific, Singapore (2016).CrossRefGoogle Scholar
  3. 3.
    Charpin P., Mesnager S., Sarkar S.: Involutions over the Galois field \({\mathbb{F}}_{2^n}\). IEEE Trans. Inf. Theory 62, 2266–2276 (2016).CrossRefzbMATHGoogle Scholar
  4. 4.
    Chou W., Shparlinski I.E.: On the cycle structure of repeated exponentiation modulo a prime. J. Number Theory 107, 345–356 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fan S., Liao L.: Dynamical structures of Chebyshev polynomials on \(\mathbb{Z}_2\). J. Number Theory 169, 174–182 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Flajolet Ph., Odlyzko A.M.: Random mapping statistics. In: Advances in Cryptology EUROCRYPT 89. Lectore Notes in Computer Science, vol. 434, pp. 329–354 (1990).Google Scholar
  7. 7.
    Gassert T.A.: Chebyshev action on finite fields. Discret. Math. 315–316, 83–94 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hongzhou N., Yun L., Dequan H.: Public key encryption algorithm based on Chebyshev polynomials over finite fields. In: Proceedings of the 8th International Conference on Signal Processing (2006).Google Scholar
  9. 9.
    Kordov K.: Modified Chebyshev map based pseudo-random bit generator. In: AIP Conference Proceedings, 1629, AIP, pp. 432–436 (2014).Google Scholar
  10. 10.
    Lehmer D.H.: An extended theory of Lucas functions. Ann. Math. 31(3), 419–448 (1930).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lidl R., Mullen G.L., Turnwald G.: Dickson Polynomials, vol. 65. Chapman & Hall/CRC, Boca Raton (1993).zbMATHGoogle Scholar
  12. 12.
    Lucas E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1(4), 289–321 (1878).CrossRefGoogle Scholar
  13. 13.
    Mullen G., Panario D.: Handbook of Finite Fields. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, Boca Raton (2013).CrossRefzbMATHGoogle Scholar
  14. 14.
    Pollard J.M.: A Monte Carlo method for factorization. BIT 15(3), 331–334 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pollard J.M.: Monte Carlo methods for index computation (mod \(p\)). Math. Comput. 32(143), 918–924 (1978).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Qureshi C., Panario D.: Rédei actions on finite fields and multiplication map in cyclic groups. SIAM J. Discret. Math. 29, 1486–1503 (2015).CrossRefzbMATHGoogle Scholar
  17. 17.
    Qureshi C., Panario D., Martins R.: Cycle structure of iterating Rédei functions. Adv. Math. Commun. 11(2), 397–407 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stoyanov B.: Pseudo-random bit generator based on Chebyshev map. In: AIP Conference Proceedings, 1561, AIP, pp. 369–372 (2013).Google Scholar
  19. 19.
    Stoyanov B.: Pseudo-random bit generation algorithm based on Chebyshev polynomial and Tinkerbell map. Appl. Math. Sci. 8, 6205–6210 (2014).Google Scholar
  20. 20.
    Ugolini S.: On the iterations of certain maps \(X\mapsto K\cdot (X+X^{-1})\) over finite fields of odd characteristic. J. Number Theory 142, 274–297 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vasiga T., Shallit J.: On the iteration of certain quadratic maps over \(GF(p)\). Discret. Math. 277, 219–240 (2004).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Statistics and Computing ScienceUnicampCampinasBrazil
  2. 2.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations