Designs, Codes and Cryptography

, Volume 87, Issue 4, pp 785–794

# Conditions for the existence of spreads in projective Hjelmslev spaces

• Ivan Landjev
• Nevyana Georgieva
Article
Part of the following topical collections:
1. Special Issue: Finite Geometries

## Abstract

Let R be a finite chain ring with $$|R|=q^m$$, and $$R/\text {Rad }R\cong \mathbb {F}_q$$. Denote by $$\varPi ={{\mathrm{PHG}}}({}_RR^n)$$ the (left) $$(n-1)$$-dimensional projective Hjelmslev geometry over R. As in the classical case, we define a $$\lambda$$-spread of $$\varPi$$ to be a partition of its pointset into subspaces of shape $$\lambda =(\lambda _1,\ldots ,\lambda _n)$$. An obvious necessary condition for the existence of a $$\lambda$$-spread $$\mathcal {S}$$ in $$\varPi$$ is that the number of points in a subspace of shape $$\lambda$$ divides the number of points in $$\varPi$$. If the elements of $$\mathcal {S}$$ are Hjelmslev subspaces, i.e., free submodules of $${}_RR^n$$, this necessary condition is also sufficient. If the subspaces in $$\mathcal {S}$$ are not Hjelmslev subspaces this numerical condition is not sufficient anymore. For instance, for chain rings with $$m=2$$, there is no spread of shape $$\lambda =(2,2,1,0)$$ in $${{\mathrm{PHG}}}({}_RR^4)$$. An important (and maybe difficult) question is to find all shapes $$\lambda$$, for which $$\varPi$$ has a $$\lambda$$-spread. In this paper, we present a construction which gives spreads by subspaces that are not necessarily Hjelmslev subspaces. We prove the non-existence of spreads of shape $$2^{n/2}1^a$$ [cf. (2)], $$1\le a\le n/2-1$$, in $${{\mathrm{PHG}}}({}_RR^n)$$, where n is even and R is a chain ring of length 2.

## Keywords

Spreads Finite chain rings Modules over finite chain rings Projective Hjelmslev spaces Galois rings

## Mathematics Subject Classification

51C05 51E23 51E05 05B25 05B30 16P10

## Notes

### Acknowledgements

This result was partially supported by the Research Scientific Fund of Sofia University “St. Kl. Ohridski” under Contract No 80-10-55/19.04.2017. The authors thank the anonymous referees for the careful reading of the manuscript and for the valuable comments and suggestions.

## References

1. 1.
Birkhoff G.: Subgroups of abelian groups. Proc. Lond. Math. Soc. 38(2), 385–401 (1934/35).Google Scholar
2. 2.
Clark W.E., Drake D.A.: Finite chain rings. Abh. Math. Sem. Univ. Hambg. 39, 147–153 (1974).
3. 3.
Etzion T., Vardy A.: On $$q$$-analogs for Steiner systems and covering designs. Adv. Math.Commun. 5, 161–176 (2011).
4. 4.
Frankl P., Wilson R.M.: The Erdös–Ko–Rado theorem for vector spaces. J. Comb. Theory Ser. A 43, 228–236 (1986).
5. 5.
Hall Jr. M.: The Theory of Groups. AMS Chelsea Publishing, Providence, RI (1959).
6. 6.
Honold Th, Landjev I.: Linear codes over finite chain rings. Electron. J. Comb. 7(1), R11 (2000).
7. 7.
Honold Th, Landjev I.: Linear codes over finite chain rings and projective hjelmslev geometries. In: Solé P. (ed.) Codes Over Rings, pp. 60–123. World Scientific, Singapore (2009).
8. 8.
Honold Th, Landjev I.: Codes over rings and ring geometries. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry. NOVA Publishers, New York (2012).Google Scholar
9. 9.
Hsieh W.N.: Intersection theorems for systems of finite vector spaces. Discret. Math. 12, 1–16 (1975).
10. 10.
Kendziorra A., Schmidt S.E.: Network coding with modular lattices. J. Algebra Appl. 10(6), 1319–1342 (2011).
11. 11.
Kiermaier M., Landjev I.: Designs in projective Hjelmslev spaces. In: Lavrauw M. (ed.) Contemporary Mathematics, vol. 579, pp. 111–122. Theory and Applications of Finite FieldsAMS, Providence, RI (2012).Google Scholar
12. 12.
Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).
13. 13.
Kreuzer A.: Hjelmslev-Räume. Result. Math. 12, 148–156 (1987).
14. 14.
Kreuzer A.: Projektive Hjelmslev-Räume, Dissertation, technische Universität München (1988).Google Scholar
15. 15.
Landjev I.: Spreads in projective Hjelmslev Geometries. Lect. Notes Comput. Sci. 5527, 186–194 (2009).
16. 16.
MacDonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995).
17. 17.
McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974).
18. 18.
Nechaev A.A.: Finite Principal Ideal Rings, vol. 20, pp. 364–382. Sbornik MathematicsRussian Academy of Sciences, Moskva (1973).Google Scholar
19. 19.
Nechaev A.A.: Finite Rings with Applications. In: Hazewinkel M. (ed.) Handbook of Algebra, vol. 5, pp. 213–320. Elsevier North-Holand, Amsterdam (2008).
20. 20.
van Lint J.H., Wilson R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1992).
21. 21.
Veldkamp F.D.: Geometry over Rings. In: Handbook of Incidence Geometry, North-Holland, Amsterdam, pp. 1033–1084 (1995).Google Scholar

## Authors and Affiliations

• Ivan Landjev
• 1
• 2
• Nevyana Georgieva
• 1
1. 1.New Bulgarian UniversitySofiaBulgaria
2. 2.Institute of Mathematics and InformaticsSofiaBulgaria