Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 2–3, pp 327–340 | Cite as

Combinatorial metrics: MacWilliams-type identities, isometries and extension property

  • Jerry Anderson Pinheiro
  • Roberto Assis Machado
  • Marcelo FirerEmail author
Article
  • 44 Downloads
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography

Abstract

In this work we characterize the combinatorial metrics admitting a MacWilliams-type identity and describe the group of linear isometries of such metrics. Considering the binary case, we classify the metrics satisfying the MacWilliams extension property (for disconnected coverings) and give a necessary condition for the extension property (for connected coverings).

Keywords

Combinatorial metric MacWilliams identity Extension of isometries 

Mathematics Subject Classification

94A24 51E22 

Notes

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (Fapesp) for the financial support through three Grants: 2013/25977-7, 2017/14616-4 and 2017/10018-5.

References

  1. 1.
    Bossert M., Sidorenko V.: Singleton-type bounds for blot-correcting codes. IEEE Trans. Inf. Theory 42(3), 1021–1023 (1996).CrossRefzbMATHGoogle Scholar
  2. 2.
    Bridwell J.D., Wolf J.K.: Burst distance and multiple-burst correction. Bell Syst. Tech. J. 49(5), 889–909 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Etzion, T., Firer, M., Machado, R.A.: Metrics based on finite directed graphs and coding invariants. arXiv preprint arXiv:1609.08067, (2016).
  4. 4.
    Feng K., Lanju X., Hickernell F.J.: Linear error-block codes. Finite Fields Their Appl. 12(4), 638–652 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gabidulin, E.M.: Combinatorial metrics in coding theory. In: 2nd International Symposium on Information Theory. Akadémiai Kiadó, (1973).Google Scholar
  6. 6.
    Gabidulin, E.: A brief survey of metrics in coding theory. Math. Distances Appl. 66 1–19 (2012).Google Scholar
  7. 7.
    MacWilliams F.J.: Combinatorial Properties of Elementary Abelian Groups. Radcliffe College, Cambridge (1962).Google Scholar
  8. 8.
    MacWilliams J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79–94 (1963).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mohamed, M.H., Bossert, M.: Combinatorial metrics and collaborative error/erasure decoding for translational metrics. In: Information Technology and Systems (ITaS), pp. 550–559 (2015).Google Scholar
  10. 10.
    Panek L., Firer M., Kim H.K., Hyun J.Y.: Groups of linear isometries on poset structures. Discret. Math. 308(18), 4116–4123 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pinheiro J.A., Firer M.: Classification of poset-block spaces admitting macwilliams-type identity. IEEE Trans. Inf. Theory 58(12), 7246–7252 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shi M., Shiromoto K., Solé P.: A note on a basic exact sequence for the lee and euclidean weights of linear codes over \(z_l\). Linear Algebra Its Appl. 475, 151–153 (2015).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Statistics and Scientific ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations