Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 2–3, pp 249–260 | Cite as

On circulant involutory MDS matrices

  • Victor Cauchois
  • Pierre LoidreauEmail author
Article
  • 181 Downloads
Part of the following topical collections:
  1. Special Issue: Coding and Cryptography

Abstract

We give a new algebraic proof of the non-existence of circulant involutory MDS matrices with coefficients in fields of characteristic 2. In odd characteristics we give parameters for the potential existence. If we relax circulancy to \(\theta \)-circulancy, then there is no restriction to the existence of \(\theta \)-circulant involutory MDS matrices even for fields of characteristic 2. Finally, we relax further the involutory definition and propose a new direct construction of almost involutory \(\theta \)-circulant MDS matrices. We show that they can be interesting in hardware implementations.

Keywords

MDS codes Involutory matrices Diffusion layers Gabidulin codes 

Mathematics Subject Classification

94B05 68R99 94A60 

Notes

References

  1. 1.
    Augot D., Finiasz M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Progress in Cryptology. FSE 2014, vol. 8540, pp. 3–17 (2014).Google Scholar
  2. 2.
    Aidinyan A.K.: On matrices with nondegenerate square submatrices. Probl. Inf. Transm. 22, 106–108 (1986).MathSciNetGoogle Scholar
  3. 3.
    Berger T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: Progress in Cryptology-INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, Berlin (2013).Google Scholar
  4. 4.
    Cauchois V., Loidreau P., Merkiche N.: Direct construction of quasi-involutory recursive-like mds matrices from \(2\)-cyclic codes. IACR Trans. Symmetric Cryptol. 2016(2), 80–98 (2016).Google Scholar
  5. 5.
    Daemen J., Rijmen V.: The Design of Rijndael—AES—The Advanced Encryption Standard. Springer, Berlin (2002).zbMATHGoogle Scholar
  6. 6.
    Gabidulin E.M.: Theory of codes with maximal rank distance. In: Problems of Information Transmission (1985).Google Scholar
  7. 7.
    Guo J., Peyrin T., Poschmann A.: The PHOTON family of lightweight hash functions. In: Advances in Cryptology. CRYPTO 2011 (2011).Google Scholar
  8. 8.
    Guo J., Peyrin T., Poschmann A., Robshaw M.J.B.: The LED block cipher. In CHES 2011, pp. 326–341 (2011).Google Scholar
  9. 9.
    Gupta K.C., Ray I.G.: On constructions of circulant MDS matrices for lightweight cryptography. ISPEC 2014, 564–576 (2014).Google Scholar
  10. 10.
    Liu M., Sim S.M.: Lightweight MDS generalized circulant matrices. In: Fast Software Encryption—23rd International Conference, FSE 2016, Bochum, Germany, March 20–23, 2016, Revised Selected Papers, pp. 101–120 (2016).Google Scholar
  11. 11.
    Li Y., Wang M.: On the construction of lightweight circulant involutory MDS matrices. In: Fast Software Encryption—23rd International Conference, FSE 2016, Bochum, Germany, March 20–23, 2016, Revised Selected Papers, pp. 121–139 (2016).Google Scholar
  12. 12.
    Roth R.M., Lempel A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory 35, 1314–1319 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Roth R.M., Seroussi G.: On generator matrices of MDS codes. IEEE Trans. Inf. Theory IT–31, 826–830 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sim S.M., Khoo K., Oggier F., Peyrin T.: Lightweight MDS involution matrices. In: FSE 2015 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DGA MIRennes Cedex 9France
  2. 2.Univ Rennes, CNRS, IRMAR - UMR 6625RennesFrance

Personalised recommendations