Designs, Codes and Cryptography

, Volume 87, Issue 4, pp 831–839 | Cite as

The classification of Steiner triple systems on 27 points with 3-rank 24

  • Dieter JungnickelEmail author
  • Spyros S. Magliveras
  • Vladimir D. Tonchev
  • Alfred Wassermann
Part of the following topical collections:
  1. Special Issue: Finite Geometries


We show that there are exactly 2624 isomorphism classes of Steiner triple systems on 27 points having 3-rank 24, all of which are actually resolvable. More generally, all Steiner triple systems on \(3^n\) points having 3-rank at most \(3^n-n\) are resolvable. Combining this observation with the lower bound on the number of such \({\mathrm {STS}}(3^n)\) recently established by two of the present authors, we obtain a strong lower bound on the number of Kirkman triple systems on \(3^n\) points. For instance, there are more than \(10^{99}\) isomorphism classes of \({\mathrm {KTS}}(81)\).


Steiner triple system Linear code Kirkman triple system 

Mathematics Subject Classification

05B05 51E10 94B27 



Vladimir Tonchev acknowledges support by the Alexander von Humboldt Foundation and NSA Grant H98230-16-1-0011.


  1. 1.
    Assmus Jr. E.F.: On \(2\)-ranks of Steiner triple systems. Electron. J. Comb. 2, Research paper 9 (1995).Google Scholar
  2. 2.
    Assmus Jr. E.F., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992).CrossRefzbMATHGoogle Scholar
  3. 3.
    Babai L.: Almost all Steiner triple systems are asymmetric. Ann. Discr. Math. 7, 37–39 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).CrossRefzbMATHGoogle Scholar
  5. 5.
    Colbourn C.J., Dinitz J.F. (eds.): Handbook of Combinatorial Designs, vol. 2. Chapman & Hall/, Boca Raton (2007).zbMATHGoogle Scholar
  6. 6.
    Colbourn C.J., Magliveras S.S., Mathon R.A.: Transitive Steiner and Kirkman triple systems of order 27. Math. Comp. 58(197), 441–450 (1992).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
  9. 9.
    Jungnickel D., Magliveras S.S., Tonchev V.D., Wassermann A.: On classifying Steiner triple systems by their 3-rank. In: Blömer J. (ed.) MACIS 2017, pp. 295–305. Lecture Notes in Computer ScienceSpringer, New York (2018).Google Scholar
  10. 10.
    Jungnickel D., Tonchev V.D.: On Bonisoli’s theorem and the block codes of Steiner triple systems. Des. Codes Cryptogr. 86, 449–462 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jungnickel, D., Tonchev, V.D.: Counting Steiner triple systems with classical parameters and prescribed rank. ArXiv e-prints 1709.06044 (2017).
  12. 12.
    Key J.D., Shobe F.D.: Some transitive Steiner triple systems of Bagchi and Bagchi. J. Stat. Plann. Inference 58, 79–86 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    McKay, B., Piperino, A.: Nauty and Traces.
  14. 14.
    Osuna O.P.: There are 1239 Steiner triple systems \(\text{ STS }(31)\) of 2-rank 27. Des. Codes Cryptogr. 40, 187–190 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Soicher, L.H.: DESIGN Package (Version 1.6) for GAP.
  16. 16.
    Teirlinck L.: On projective and affine hyperplanes. J. Combin. Th. Ser. A 28, 290–306 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tonchev V.D.: A mass formula for Steiner triple systems STS\((2^{n}-1)\) of 2-rank \(2^n -n\). J. Combin. Theory Ser. A 95, 197–208 (2001).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of AugsburgAugsburgGermany
  2. 2.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA
  4. 4.Mathematical InstituteUniversity of BayreuthBayreuthGermany

Personalised recommendations