Advertisement

Designs, Codes and Cryptography

, Volume 87, Issue 1, pp 97–106 | Cite as

Improved bounds on 2-frameproof codes with length 4

  • Minquan ChengEmail author
  • Jing Jiang
  • Qiang Wang
Article
  • 91 Downloads

Abstract

Frameproof codes (FPCs) are widely studied as they are classic fingerprinting codes that can protect copyrighted materials. The main interests are construction methods and bounds of the number of codewords of FPCs for a fixed length when the alphabet size approaches infinity. In this paper, we focus on the upper bound of the size of FPCs when the fixed length is 4 and the strength is 2. We obtain an upper bound \(2q^2-2q+7\) on the size of a q-ary 2-FPC of length 4 for any positive integer \(q> 48\). The best previously well known bound of this type of FPCs is \(2q^2-2\), which is due to Blackburn (SIAM J Discret Math 16:499–510, 2003). Our new upper bound improves the previous upper bound and it is not very far from the current best lower bound \(2q^2-4q+3\) obtained from the explicit construction due to Chee and Zhang (IEEE Trans Inf Theory 58:5449–5453, 2012).

Keywords

Fingerprinting code Frameproof code Upper bound 

Mathematics Subject Classification

94B25 68P30 

Notes

Acknowledgements

The authors express their sincere thanks to the Associate Editor, Prof. Ayshwarya Ganesan and three anonymous reviewers for their helpful suggestions which improved this paper significantly. Minquan Cheng and Jing Jiang were in part supported by NSFC (Nos. 11301098, 11601096), 2016GXNSF (Nos. FA380011, CA380021), Guangxi Higher Institutions Program of Introducing 100 High-Level Overseas Talents, Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (16-B-01, 18-B-01). The research of Qiang Wang was partially supported by NSERC of Canada.

References

  1. 1.
    Bazrafshan M., van Trung T.: On optimal bounds for separating hash families. In: Germany-Africa Workshop on Information and Communication Technology, Essen, Germany (2008).Google Scholar
  2. 2.
    Bazrafshan M., van Trung T.: Improved bounds for separating hash families. Des. Codes Cryptogr. 69, 369–382 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blackburn S.R.: Frameproof codes. SIAM J. Discret. Math. 16, 499–510 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blackburn S.R., Etzion T., Stinson D.R., Zaverucha G.M.: A bound on the size of separating hash families. J. Comb. Theory A 115, 1246–1256 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blackburn S.R., Etzion T., Ng S.: Traceability codes. J. Comb. Theory A 117, 1049–1057 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44, 1897–1905 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chee Y., Zhang X.: Improved constructions of frameproof codes. IEEE Trans. Inf. Theory 58, 5449–5453 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng M., Miao Y.: On anti-collusion codes and detection algorithms for multimedia fingerprinting. IEEE Trans. Inf. Theory 57, 4843–4851 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheng M., Ji L., Miao Y.: Separable codes. IEEE Trans. Inf. Theory 58, 1791–1803 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng M., Fu H.-L., Jiang J., Lo Y.-H., Miao Y.: New bounds on $\overline{2}$-separable codes of length $2$. Des. Codes Cryptogr. 74, 31–40 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo C., Stinson D.R., van Trung T.: On tight bounds for binary frameproof codes. Des. Codes Cryptogr. 77, 301–319 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hollmann H.D.L., Lint J.H., Linnartz J.-P., Tolhuizen L.M.G.M.: On codes with the identifiable parent property. J. Comb. Theory A 82, 121–133 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mehlhorn K.: Data Structures and Algorithms. 1. Sorting and Searching. Springer, Berlin (1984).zbMATHGoogle Scholar
  14. 14.
    Shangguan C., Wang X., Ge G., Miao Y.: New bounds for frameproof codes. IEEE Trans. Inf. Theory 63, 7247–7252 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47, 1042–1049 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stinson D.R., Wei R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discret. Math. 11, 41–53 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86, 595–617 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stinson D.R., Wei R., Chen K.: On generalized separating hash families. J. Comb. Theory A 115, 105–120 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    van Trung T.: A tight bound for frameproof codes viewed in terms of separating hash families. Des. Codes Cryptogr. 72, 713–718 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xing C.: Asymptotic bounds on frameproof codes. IEEE Trans. Inf. Theory 48, 2991–2995 (2002).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Key Lab of Multi-source Information Mining & SecurityGuangxi Normal UniversityGuilinChina
  2. 2.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations