A note on the weight spectrum of the Schubert code \(C_{\alpha }(2, m)\)
- 16 Downloads
Abstract
We consider the Schubert code \(C_{\alpha }(2, m)\) associated to the \(\mathbb {F}_q\)-rational points of the Schubert variety \(\Omega _{\alpha }(2,m)\) in the Grassmannian \(G_{2,m}\). A correspondence between codewords of \(C_{\alpha }(2, m)\) and skew-symmetric matrices of certain special form is given. Using this correspondence, we give a formula for all possible weights of codewords in \(C_{\alpha }(2, m)\). It is shown that the weight of each codeword is divisible by certain power of q. Further, a formula for the weight spectrum of the Schubert code \(C_{\alpha }(2, m)\) is given.
Keywords
Grassmann code Schubert code Weight spectrum Weight enumerator polynomialMathematics Subject Classification
94B27 11T71 14M15Notes
Acknowledgements
The authors would like to thank the anonymous referees for their suggestions to improve the article. We would also like to thank S.R. Ghorpade and A.R. Patil for their warm hospitality.
References
- 1.Beelen P., Piñero F.: The structure of dual Grassmann codes. Des. Codes Cryptogr. 79, 451–470 (2016).MathSciNetCrossRefMATHGoogle Scholar
- 2.Beelen P., Ghorpade S.R., Hasan S.U.: Linear codes associated to determinantal varieties. Discret. Math. 338, 1493–1500 (2015).MathSciNetCrossRefMATHGoogle Scholar
- 3.Chen H.: On the minimum distance of Schubert codes. IEEE Trans. Inf. Theory 46, 1535–1538 (2000).MathSciNetCrossRefMATHGoogle Scholar
- 4.Ghorpade S.R., Lachaud G.: Higher weights of Grassmann codes. In: Buchmann J., Hoeholdt T., Stichtenoth H., Tapia-Recillas H. (eds.) Coding Theory, Cryptography and Related Areas (Guanajuato, 1998), pp. 122–131. Springer, Berlin (2000).CrossRefGoogle Scholar
- 5.Ghorpade S.R., Singh P.: Minimum distance and the minimum weight codewords of Schubert codes. Finite Fields Appl. 49, 1–28 (2018).MathSciNetCrossRefMATHGoogle Scholar
- 6.Ghorpade S.R., Tsfasman M.A.: Schubert varieties, linear codes and enumerative combinatorics. Finite Fields Appl. 11, 684–699 (2005).MathSciNetCrossRefMATHGoogle Scholar
- 7.Guerra L., Vincenti R.: On the linear codes arising from Schubert varieties. Des. Codes Cryptogr. 33, 173–180 (2004).MathSciNetCrossRefMATHGoogle Scholar
- 8.Kaipa K., Pillai H.: Weight spectrum of codes associated with the Grassmannian \(G(3,7)\). IEEE Trans. Inf. Theory 59, 983–993 (2013).MathSciNetCrossRefMATHGoogle Scholar
- 9.Kleiman S.L., Laksov D.: Schubert calculus. Am. Math. Mon. 79, 1061–1082 (1972).MathSciNetCrossRefMATHGoogle Scholar
- 10.Nogin D.Y.: Codes associated to Grassmannians. In: Pellikaan R., Perret M., Vlăduţ S.G. (eds.) Arithmetic, Geometry and Coding Theory (Luminy, 1993), pp. 145–154. Walter de Gruyter, Berlin (1996).Google Scholar
- 11.Nogin D.Y.: The spectrum of codes associated with the Grassmannian variety \(G(3,6)\). Probl. Inf. Transm. 33, 114–123 (1997).MathSciNetMATHGoogle Scholar
- 12.Ryan C.T.: An application of Grassmann varieties to coding theory. Congr. Numer. 57, 257–271 (1987).MathSciNetGoogle Scholar
- 13.Ryan C.T.: Projective codes based on Grassmann varieties. Congr. Numer. 57, 273–279 (1987).MathSciNetMATHGoogle Scholar
- 14.SageMath: The Sage Mathematics Software System, Version 7.2.3. The Sage Developers (2017). http://www.sagemath.org. Accessed 01 April 2017.
- 15.Tsfasman M., Vlăduţ S., Nogin D.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007).Google Scholar
- 16.Xiang X.: On the minimum distance conjecture for Schubert codes. IEEE Trans. Inf. Theory 54, 486–488 (2008).MathSciNetCrossRefMATHGoogle Scholar