Advertisement

Projective Reed–Muller type codes on higher dimensional scrolls

  • Cícero Carvalho
  • Xavier Ramírez-MondragónEmail author
  • Victor G. L. Neumann
  • Horacio Tapia-Recillas
Article
  • 59 Downloads

Abstract

In 1988 Lachaud introduced the class of projective Reed–Muller codes, defined by evaluating the space of homogeneous polynomials of a fixed degree d on the points of \(\mathbb {P}^n(\mathbb {F}_q)\). In this paper we evaluate the same space of polynomials on the points of a higher dimensional scroll, defined from a set of rational normal curves contained in complementary linear subspaces of a projective space. We determine a formula for the dimension of the codes, and the exact value of the dimension and the minimum distance in some special cases.

Keywords

Projective variety codes Evaluation codes Reed–Muller type codes Higher dimensional scroll 

Mathematics Subject Classification

11T71 13P25 94B60 

Notes

Acknowledgements

The second author is grateful to Prof. F. Zaldivar for pointing out the concept of a higher dimensional scroll. We thank the referees for a careful reading and their comments which improved the manuscript.

References

  1. 1.
    Becker T., Weispfenning W.: Gröbner Bases. Springer, New York (1993).CrossRefzbMATHGoogle Scholar
  2. 2.
    Beelen, P., Datta, M., Ghorpade, S.R.: A combinatorial approach to the number of solutions of systems of homogeneous polynomial equations over finite fields. arXiv:1807.01683v2 (2018)
  3. 3.
    Beelen P., Datta M., Ghorpade S.R.: Maximum number of common zeros of homogeneous polynomials over finite fields. Proc. Am. Math. Soc. 146(4), 1451–1468 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carvalho C., Neumann V.G.L.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85–107 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carvalho C., Neumann V.G.L., Lopez H.: Projective nested cartesian codes. Bull. Braz. Math. Soc. 48, 283–302 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Couvreur A., Duursma I.: Evaluation codes from smooth quadric surfaces and twisted Segre varieties. Des. Codes Cryptogr. 66, 291–303 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007).CrossRefzbMATHGoogle Scholar
  9. 9.
    Duursma I., Rentería C., Tapia-Recillas H.: Reed Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. (AAECC) 11, 455–462 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    González-Sarabia, M., Martínez-Bernal, J., Villarreal, R.H., Vívares, C.E.: Generalized minimum distance functions. J. Algebr. Comb.  https://doi.org/10.1007/s10801-018-0855-x (2018)
  11. 11.
    González-Sarabia M., Rentería C., Tapia Recillas H.: Reed-Muller type codes over the segre variety. Finite Fields Appl. 8, 511–518 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    González-Sarabia M., Rentería C.: The dual code of some Reed-Muller-type codes. Appl. Algebra Eng. Commun. Comput. (AAECC) 14, 329–333 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harris, J.: Algebraic Geometry: A First Course, 3rd. edn, Springer, GTM, no. 133 (1995)Google Scholar
  14. 14.
    Lachaud G.: Projective Reed-Muller codes. In: Cohen G., Godlewski P. (eds.) Coding Theory and Applications. Lecture Notes in Computer Science, vol. 311. Springer, Berlin (1988).Google Scholar
  15. 15.
    Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rentería, C., Tapia-Recillas, H.: Reed-Muller type codes on the Veronese Variety over finite fields. In: Buchmann, J., Hoholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, ISBN 3-540-66248-0, pp. 237–243 , Springer, New York (2000)Google Scholar
  17. 17.
    Sörensen A.B.: Projective Reed-Muller codes. IEEE Trans. Inform. Theory 37(6), 1567–1576 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tochimani A., Pinto M.V., Villarreal R.H.: Direct products in projective Segre codes. Finite Fields Appl. 39, 96–110 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tucker A.: Applied Combinatorics, 6th edn. Wiley, New York (2012).zbMATHGoogle Scholar
  20. 20.
    van Lint, J.H.: Coding Theory, Lect. Notes Math., 2nd edn, vol. 201. Springer, Berlin (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculdade de MatemáticaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Departamento de MatemáticasUniversidad Autónoma MetropolitanaDelegación IztapalapaMexico

Personalised recommendations