Miklós–Manickam–Singhi conjectures on partial geometries
- 137 Downloads
Abstract
In this paper we give a proof of the Miklós–Manickam–Singhi (MMS) conjecture for some partial geometries. Specifically, we give a condition on partial geometries which implies that the MMS conjecture holds. Further, several specific partial geometries that are counterexamples to the conjecture are described.
Keywords
Partial geometries MMS conjecture EKR theoremMathematics Subject Classification
Primary 05B25 51E20 05E30Notes
Acknowledgements
The authors would like to thank Klaus Metsch for pointing out the construction by Jungnickel and Tonchev used in Lemma 4.5. The authors would also like to thank Ameera Chowdhury for discussing MMS conjectures with them and providing various preprints of her work. The authors would like to thank John Bamberg for his suggestion to include a discussion of all known partial geometries with \(\alpha =2\). The authors would like to thank the referees for their very helpful and constructive comments on the presentation of the results. Research supported in part by an NSERC Discovery Research Grant, Application No.: RGPIN-341214-2013. The first author acknowledges support from a PIMS Postdoctoral Fellowship.
References
- 1.Alon N., Huang H., Sudakov B.: Nonnegative \(k\)-sums, fractional covers, and probability of small deviations. J. Comb. Theory Ser. B 102(3), 784–796 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bier T.: A distribution invariant for association schemes and strongly regular graphs. Linear Algebra Appl. 57, 105–113 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bier T., Delsarte P.: Some bounds for the distribution numbers of an association scheme. Eur. J. Comb. 9(1), 1–5 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs, vol. 18. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1989).Google Scholar
- 5.Cameron P.J., van Lint J.H.: On the partial geometry \({\rm pg}(6,\,6,\,2)\). J. Comb. Theory Ser. A 32(2), 252–255 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Chowdhury A., Sarkis G., Shahriari S.: The Manickam-Miklós-Singhi conjectures for sets and vector spaces. J. Comb. Theory Ser. A 128, 84–103 (2014).CrossRefzbMATHGoogle Scholar
- 7.Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2007).zbMATHGoogle Scholar
- 8.De Clerck F., Van Maldeghem H.: Some classes of rank 2 geometries, Chap. 2. In: Buekenhout F. (ed.) Handbook of Incidence Geometry, pp. 434–471. Elsevier, North Holland (1995).Google Scholar
- 9.De Clerck F.: Partial and semipartial geometries: an update. Discret. Math. 267(1–3), 75–86 (2003). Combinatorics 2000 (Gaeta).MathSciNetCrossRefzbMATHGoogle Scholar
- 10.De Clerck F., Delanote M., Hamilton N., Mathon R.: Perp-systems and partial geometries. Adv. Geom. 2(1), 1–12 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Doyen J., Wilson R.M.: Embeddings of Steiner triple systems. Discret. Math. 5, 229–239 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2(12), 313–320 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Godsil C., Meagher K.: Erdős-Ko-Rado Theorems: Algebraic Approaches. Cambridge Studies in Advanced Mathematics, vol. 149. Cambridge University Press, Cambridge (2016).Google Scholar
- 14.Haemers W.: A new partial geometry constructed from the Hoffman-Singleton graph. Finite Geom. Designs 49, 119–127 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Huang H., Sudakov B.: The minimum number of nonnegative edges in hypergraphs. Electron. J. Comb. (2014). arXiv:1309.2549
- 16.Jungnickel D., Tonchev V.D.: The number of designs with geometric parameters grows exponentially. Des. Codes Cryptogr. 55(2–3), 131–140 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Kaski P., Östergård P.R.J., Topalova S., Zlatarski R.: Steiner triple systems of order 19 and 21 with subsystems of order 7. Discret. Math. 308(13), 2732–2741 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
- 18.MacNeish H.F.: Euler squares. Ann. Math. (2) 23(3), 221–227 (1922).MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Manickam N., Miklós D.: On the number of nonnegative partial sums of a nonnegative sum. In: Combinatorics (Eger, 1987) Colloq. Math. Soc. János Bolyai, vol. 52, pp. 385–392. North-Holland, Amsterdam (1988)Google Scholar
- 20.Manickam N., Singhi N.M.: First distribution invariants and EKR theorems. J. Comb. Theory Ser. A 48(1), 91–103 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Pokrovskiy A.: A linear bound on the Manickam-Miklós-Singhi conjecture. J. Comb. Theory Ser. A 133, 280–306 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 22.van Lint J.H., Schrijver A.: Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields. Combinatorica 1(1), 63–73 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Witt E.: Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg 12(1), 256–264 (1937).MathSciNetCrossRefzbMATHGoogle Scholar