Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microbiome and Gastric Cancer


The late 1800s Louis Pasteur and Robert Koch introduced and popularized the germ theory of disease. At that time, gastric cancer was the most common cause of cancer deaths in most countries making the stomach an early site of microbial research with a focus on gastric luminal and mucosal bacteria and the role of Boas-Oppler bacillus (Lactobacillus) in the diagnosis of gastric cancer. In the 1970s, the research focus evolved to studies of the gastric microbiome in the production of nitrosamines and included development of the Correa cascade. Interest in nitrosamine production peaked in the late 1980s and was replaced by studies of the newly described Helicobacter pylori and studies of its role in gastritis, gastric atrophy, and gastric cancer. The last decade has witnessed a rebirth in interest in the gastric microbiota as part of worldwide interest in the human microbiome. Although fungi were prominent in the studies of gastric microbiology in the nineteenth century, their potential role in disease pathogenesis has yet to be addressed using modern techniques. Overall, current studies of the gastric bacterial microbiome do not provide convincing evidence to expand the role of the gastric microbiome in cancer pathogenesis beyond what is directly attributable to the oncogenic potential of H. pylori and its role in persisting acute-on-chronic inflammation.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Tan MC, Balakrishnan M, Graham DY. Gastric cancer worldwide except Japan. In: Gastric cancer with special focus on studies from Japan. In: Shiotani A, ed. Gastric cancer with special focus on studies from Japan. Singapore: Springer; 2018:17–28.

  2. 2.

    von den Velden R. Ueber vorkommen und mandgel der freien salzsaure in magensaft bei gastrektasie. Deutsches Arch F Klin Med. 1879;23:369–399.

  3. 3.

    Graham DY, Asaka M. Eradication of gastric cancer and more efficient gastric cancer surveillance in Japan: two peas in a pod. J Gastroenterol. 2010;45:1–8.

  4. 4.

    Boas II, Oppler B. Zur kenntniss des mageninhalts beim carcinoma ventriculi. Deutsch Med Wchnsch. 1895;21:73–75.

  5. 5.

    Boas I. Cancer of the Stomach. In: Boas I, Bernheim A, eds. Diseases of the stomach. Philadelphia: F.A. Davis Company; 1907:561–604.

  6. 6.

    Turck FB. The early diagnosis of carcinoma of the stomach, with bacteriology of the stomach contents. JAMA. 1895;24:317–319.

  7. 7.

    Turck FB. Combined gastroscope and gyromele for diagnostic and therapeutic purposes. JAMA. 1903;23:1412–1413.

  8. 8.

    Abelous JE. Recherches sur les microbes de l’estomac a L’etat normal et leur action sur les substances alimentares. In: Masson G, ed. Comptes rendus hebdomadaires des séances et mémoires de la Société de biologie. Paris: Library of the Academy of Medicine; 1889:86–89.

  9. 9.

    Schmidt R. Demonstration bakteriologischer Fazespraparte. Munch Med Wochenschr. 1903;50:2165.

  10. 10.

    Heinemann PG, Ecker EE. A study of the Boas-Oppler bacillus. J Bacteriol. 1916;1:435–444.

  11. 11.

    Anonymous. The Boas-Oppler Bacillus. JAMA 1917;69(5):377.

  12. 12.

    Comfort MW. Gastric acidity before and after development of gastric cancer: its etiologic, diagnostic and prognostic significance. Ann Intern Med. 1951;36:1331–1348.

  13. 13.

    Barber M, Franklin RH. Bacteriology of stomach and duodenum in cases of peptic ulcer and gastric carcinoma. Br Med J. 1946;1:951–953.

  14. 14.

    Spallanzani L. Experiences sur la digestion de L’homme et de diferentes especes d’animaux. Geneva: Chez Barthelemi Chirol, 1783.

  15. 15.

    Macfadyen A. Behavior of bacteria in the digestive tract. J Anat Physiol. 1887;21:413–437.

  16. 16.

    Gillespie AL. The bacteria of the stomach. In: Woodhead German S, ed. The journal of pathology and bacteriology. Edinburgh: Young J. Pentland; 1893:279–302.

  17. 17.

    Giannella RA, Broitman SA, Zamcheck N. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut. 1972;13:251–256.

  18. 18.

    Bartsch, H. O’Neill. I. K. and Shulte-Hermann.R. The Relevance of N-nitroso compounds to human cancer: Exposures and mechanisms. 1-658. 1987. Baden, Austria, IARC Scientific Publication No. 84. Proceedings of the IXth International Symposium on N-Nitroso Compounds.

  19. 19.

    Jakszyn P, Bingham S, Pera G, et al. Endogenous versus exogenous exposure to N-nitroso compounds and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study. Carcinogenesis. 2006;27:1497–1501.

  20. 20.

    Tricker AR, Preussmann R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res. 1991;259:277–289.

  21. 21.

    Xu L, Qu YH, Chu XD, et al. Urinary levels of N-nitroso compounds in relation to risk of gastric cancer: findings from the Shanghai cohort study. PLoS One. 2015;10:e0117326.

  22. 22.

    Loh YH, Jakszyn P, Luben RN, et al. N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am J Clin Nutr. 2011;93:1053–1061.

  23. 23.

    Gilchrist M, Winyard PG, Benjamin N. Dietary nitrate–good or bad? Nitric Oxide. 2010;22:104–109.

  24. 24.

    Ward MH, Heineman EF, Markin RS, et al. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int J Occup Environ Health. 2008;14:193–197.

  25. 25.

    Keszei AP, Goldbohm RA, Schouten LJ, et al. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am J Clin Nutr. 2013;97:135–146.

  26. 26.

    Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review. Nitric Oxide. 2018;73:66–73.

  27. 27.

    Correa P, Haenszel W, Cuello C, et al. A model for gastric cancer epidemiology. Lancet. 1975;2:58–60.

  28. 28.

    Correa P, Cuello C, Gordillo G, et al. The gastric microenvironment in populations at high risk to stomach cancer. Natl Cancer Inst Monogr. 1979;79:167–170.

  29. 29.

    Montes G, Cuello C, Gordillo G, et al. Mutagenic activity of gastric juice. Cancer Lett. 1979;7:307–312.

  30. 30.

    Ruddell WS, Bone ES, Hill MJ, et al. Gastric-juice nitrite: a risk factor for cancer in the hypochlorhydric stomach? Lancet. 1976;2:1037–1039.

  31. 31.

    Ruddell WS, Blends LM, Walters CL. Proceedings: Nitrite and thiocyanate in gastric juice. Gut. 1976;17:401.

  32. 32.

    Jakszyn P, Gonzalez CA. Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol. 2006;12:4296–4303.

  33. 33.

    Choi NW, Miller AB, Fodor JG, et al. Consumption of precursors of N-nitroso compounds and human gastric cancer. IARC Sci Publ. 1987;84:492–496.

  34. 34.

    Hall CN, Darkin D, Brimblecombe R, et al. Evaluation of the nitrosamine hypothesis of gastric carcinogenesis in precancerous conditions. Gut. 1986;27:491–498.

  35. 35.

    Aditi A, Graham DY. Vitamin C, Gastritis, and gastric disease: A historical review and update. Dig Dis Sci. 2012;57:2504–2515. https://doi.org/10.1007/s10620-012-2203-7

  36. 36.

    Sobala GM, Schorah CJ, Sanderson M, et al. Ascorbic acid in the human stomach. Gastroenterology. 1989;97:357–363.

  37. 37.

    Sobala GM, Pignatelli B, Schorah CJ, et al. Levels of nitrite, nitrate, N-nitroso compounds, ascorbic acid and total bile acids in gastric juice of patients with and without precancerous conditions of the stomach. Carcinogenesis. 1991;12:193–198.

  38. 38.

    Petersen CP, Mills JC, Goldenring JR. Murine models of gastric corpus preneoplasia. Cell Mol Gastroenterol Hepatol. 2017;3:11–26.

  39. 39.

    Graham DY, Zou WY. Guilt by association: intestinal metaplasia does not progress to gastric cancer. Curr Opin Gastroenterol. 2018;34:458–464.

  40. 40.

    Nozaki K, Shimizu N, Ikehara Y, et al. Effect of early eradication on Helicobacter pylori-related gastric carcinogenesis in Mongolian gerbils. Cancer Sci. 2003;94:235–239.

  41. 41.

    Shimizu N, Ikehara Y, Inada K, et al. Eradication diminishes enhancing effects of Helicobacter pylori infection on glandular stomach carcinogenesis in Mongolian gerbils. Cancer Res. 2000;60:1512–1514.

  42. 42.

    Shimizu N, Inada K, Nakanishi H, et al. Helicobacter pylori infection enhances glandular stomach carcinogenesis in Mongolian gerbils treated with chemical carcinogens. Carcinogenesis. 1999;20:669–676.

  43. 43.

    Hayakawa Y, Fox JG, Gonda T, et al. Mouse models of gastric cancer. Cancers (Basel). 2013;5:92–130.

  44. 44.

    Tsuda A, Suda W, Morita H, et al. Influence of proton-pump inhibitors on the luminal microbiota in the gastrointestinal tract. Clin Transl Gastroenterol. 2015;6:e89.

  45. 45.

    Graham DY. Helicobacter pylori update: Gastric cancer, reliable therapy, and possible benefits. Gastroenterology. 2015;148:719–731.

  46. 46.

    Miftahussurur M, Yamaoka Y, Graham DY. Helicobacter pylori as an oncogenic pathogen, revisited. Expert Rev Mol Med. 2017;19:e4.

  47. 47.

    Kamada T, Haruma K, Ito M, et al. Time trends in Helicobacter pylori infection and atrophic gastritis over 40 years in Japan. Helicobacter. 2015;20:192–198.

  48. 48.

    Wang C, Weber A, Graham DY. Age, period, and cohort effects on gastric cancer mortality. Dig Dis Sci. 2015;60:514–523. https://doi.org/10.1007/s10620-014-3359-0

  49. 49.

    Hanada K, Graham DY. Helicobacter pylori and the molecular pathogenesis of intestinal-type gastric carcinoma. Expert Rev Anticancer Ther. 2014;14:947–954.

  50. 50.

    Kidane D. Molecular mechanisms of H pylori-induced DNA double-strand breaks. Int J Mol Sci. 2018;19:2891.

  51. 51.

    Choi IJ, Kook MC, Kim YI, et al. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N Engl J Med. 2018;378:1085–1095.

  52. 52.

    Coati I, Fassan M, Farinati F, et al. Autoimmune gastritis: pathologist’s viewpoint. World J Gastroenterol. 2015;21:12179–12189.

  53. 53.

    Marne C, Pallares R, Casanova A, et al. Gastric juice microflora in patients with gastric ulcer and gastric cancer. Eur J Clin Microbiol. 1985;4:426–427.

  54. 54.

    Gray JD, Shiner M. Influence of gastric pH on gastric and jejunal flora. Gut. 1967;8:574–581.

  55. 55.

    Sjostedt S, Kager L, Heimdahl A, et al. Microbial colonization of tumors in relation to the upper gastrointestinal tract in patients with gastric carcinoma. Ann Surg. 1988;207:341–346.

  56. 56.

    Sjostedt S, Heimdahl A, Kager L, et al. Microbial colonization of the oropharynx, esophagus and stomach in patients with gastric diseases. Eur J Clin Microbiol. 1985;4:49–51.

  57. 57.

    Minalyan A, Gabrielyan L, Scott D, et al. The gastric and intestinal microbiome: role of proton pump inhibitors. Curr Gastroenterol Rep. 2017;19:42.

  58. 58.

    Li TH, Qin Y, Sham PC, et al. Alterations in gastric microbiota after H. pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep. 2017;7:44935.

  59. 59.

    Massarrat S, Saniee P, Siavoshi F, et al. The Effect of Helicobacter pylori infection, aging, and consumption of proton pump inhibitor on fungal colonization in the stomach of dyspeptic patients. Front Microbiol. 2016;7:801.

  60. 60.

    Azab M, Doo L, Doo DH, et al. Comparison of the hospital-acquired Clostridium difficile infection risk of using proton pump inhibitors versus histamine-2 receptor antagonists for prophylaxis and treatment of stress ulcers: A systematic review and meta-analysis. Gut Liver. 2017;11:781–788.

  61. 61.

    Rosen R, Hu L, Amirault J, et al. 16S community profiling identifies proton pump inhibitor related differences in gastric, lung, and oropharyngeal microflora. J Pediatr. 2015;166:917–923.

  62. 62.

    Wang K, Lin HJ, Perng CL, et al. The effect of H2-receptor antagonist and proton pump inhibitor on microbial proliferation in the stomach. Hepatogastroenterology. 2004;51:1540–1543.

  63. 63.

    Peterson WL, Mackowiak PA, Barnett CC, et al. The human gastric bactericidal barrier: mechanisms of action, relative antibacterial activity, and dietary influences. J Infect Dis. 1989;159:979–983.

  64. 64.

    Osato MS, Gutierrez O, Kim JG, et al. Microflora of gastric biopsies from patients with duodenal ulcer and gastric cancer: a comparative study of patients from Korea, Colombia, and the United States. Dig Dis Sci. 1998;43:2291–2295. https://doi.org/10.1023/A:1026631009190

  65. 65.

    Monstein HJ, Tiveljung A, Kraft CH, et al. Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori-associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J Med Microbiol. 2000;49:817–822.

  66. 66.

    Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A. 2006;103:732–737.

  67. 67.

    Dicksved J, Lindberg M, Rosenquist M, et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol. 2009;58:509–516.

  68. 68.

    Delong EF. Preface. Microbial metagenomics, metatranscriptomics, and metaproteomics. Methods Enzymol. 2013;531:21.

  69. 69.

    Zhu Z, Ren J, Michail S, et al. Correction to: MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biol. 2019;20:214.

  70. 70.

    Andersson AF, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3:e2836.

  71. 71.

    Vuik F, Dicksved J, Lam SY, et al. Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals. United Eur Gastroenterol J. 2019;7:897–907.

  72. 72.

    Chen L, Xu W, Lee A, et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: An open-label, randomized clinical trial. EBioMedicine. 2018;35:87–96.

  73. 73.

    Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011;5:574–579.

  74. 74.

    Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, et al. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep. 2014;4:4202.

  75. 75.

    Liu X, Shao L, Liu X, et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019;40:336–348.

  76. 76.

    Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67:226–236.

  77. 77.

    Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821.

  78. 78.

    Coker OO, Dai Z, Nie Y, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut. 2018;67:1024–1032.

  79. 79.

    Noto JM, Peek RM Jr. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog. 2017;13:e1006573.

  80. 80.

    Castano-Rodriguez N, Goh KL, Fock KM, et al. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017;7:15957.

  81. 81.

    Mailhe M, Ricaboni D, Vitton V, et al. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol. 2018;18:157.

  82. 82.

    Park CH, Lee AR, Lee YR, et al. Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing. Helicobacter. 2019;24:e12547.

  83. 83.

    Sung J, Kim N, Kim J, et al. Comparison of gastric microbiota between gastric juice and mucosa by next generation sequencing method. J Cancer Prev. 2016;21:60–65.

  84. 84.

    Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–392.

  85. 85.

    Carstens A, Roos A, Andreasson A, et al. Differential clustering of fecal and mucosa-associated microbiota in ‘healthy’ individuals. J Dig Dis. 2018;19:745–752.

  86. 86.

    Saffarian A, Mulet C, Regnault B et al. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. MBio 2019;10.

Download references


Dr. Engstrand is supported in part by Ferring Phamaceuticals (public–private partnership) and grants from European Union (Horizon 2020) and the Swedish research council. Dr. Graham is supported in part by the Office of Research and Development Medical Research Service Department of Veterans Affairs, Public Health Service grant DK56338 which funds the Texas Medical Center Digestive Diseases Center.

Author information

Correspondence to David Y. Graham.

Ethics declarations

Conflicts of interest

Dr. Graham is a consultant for RedHill Biopharma and Phathom Pharmaceuticals regarding novel H. pylori therapies and has received research support for culture of Helicobacter pylori and is the PI of an international study of the use of antimycobacterial therapy for Crohn’s disease. Dr. Engstrand has no relevant conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Engstrand, L., Graham, D.Y. Microbiome and Gastric Cancer. Dig Dis Sci (2020). https://doi.org/10.1007/s10620-020-06101-z

Download citation


  • Helicobacter pylori
  • Microbiome
  • Gastric cancer
  • Inflammation
  • Culture
  • Next-generation sequencing