Skip to main content
Log in

Glypican-1 Promotes Tumorigenesis by Regulating the PTEN/Akt/β-Catenin Signaling Pathway in Esophageal Squamous Cell Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Glypican-1 (GPC1), a cell-surface heparan sulfate proteoglycan, promotes the pathogenesis of many human cancers. This study focuses on the role of GPC1 in the promotion of cell proliferation and motility in esophageal squamous cell carcinoma (ESCC).

Methods

The expression and distribution of GPC1 were measured in tumor tissues from 248 ESCC patients using immunohistochemical (IHC) assays. Cell counting (kit-8), flow cytometry, Transwell, wound healing, IHC, and Western blotting assays were performed to examine the molecular mechanisms that underlie how GPC1 enhances cell proliferation and motility.

Results

The level of GPC1 was higher in ESCC tumor samples than in para-tumor tissues (IHC score: 5.42 ± 2.15 vs. 0.86 ± 0.96). Ectopic overexpression of GPC1 in EC9706 cells promoted cell growth and the G1/S phase transition; conversely, GPC1 knockdown in Eca109 cells attenuated cell proliferation and induced G2/M phase arrest. In addition, GPC1 upregulation enhanced ESCC cell motility and induced epithelial mesenchymal transition (EMT), as demonstrated by the aberrant expression of EMT markers. Mechanistically, we demonstrated that GPC1 increased levels of p-Akt and β-catenin and reduced PTEN expression in ESCC.

Conclusions

Our study indicated that GPC1 promotes the aggressive proliferation of ESCC cells by regulating the PTEN/Akt/β-catenin pathway. GPC1 may be a promising target for ESCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–2509.

    Article  CAS  PubMed  Google Scholar 

  2. Murphy G, McCormack V, Abedi-Ardekani B, et al. International cancer seminars: a focus on esophageal squamous cell carcinoma. Ann Oncol. 2017;28:2086–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song HH, Filmus J. The role of glypicans in mammalian development. Biochim Biophys Acta. 2002;1573:241–246.

    Article  CAS  PubMed  Google Scholar 

  4. Jen YH, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 2009;4:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chamorro-Jorganes A, Araldi E, Rotllan N, Cirera-Salinas D, Suarez Y. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells. J Cell Sci. 2014;127:1169–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem. 2003;278:16045–16053.

    Article  CAS  PubMed  Google Scholar 

  7. Su G, Meyer K, Nandini CD, et al. Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am J Pathol. 2006;168:2014–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whipple CA, Lander AD, Korc M. Discovery of a novel molecule that regulates tumor growth and metastasis. Sci World J. 2008;8:1250–1253.

    Article  Google Scholar 

  9. Lu H, Niu F, Liu F, et al. Elevated glypican-1 expression is associated with an unfavorable prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 2017;6:1181–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hara H, Takahashi T, Serada S, et al. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer. 2016;115:66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    Article  CAS  PubMed  Google Scholar 

  12. Luo J, Manning BD, Cantley LC. Targeting the PI3 K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4:257–262.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Simpson L, Takahashi M, et al. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Can Res. 1998;58:5667–5672.

    CAS  Google Scholar 

  14. Tamura M, Gu J, Takino T, Yamada KM. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999;59:442–449.

    CAS  PubMed  Google Scholar 

  15. Harada E, Serada S, Fujimoto M, et al. Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma. Oncotarget. 2017;8:24741–24752.

    PubMed  PubMed Central  Google Scholar 

  16. Shiau CE, Hu N, Bronner-Fraser M. Altering Glypican-1 levels modulates canonical Wnt signaling during trigeminal placode development. Dev Biol. 2010;348:107–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma J, Guo X, Zhang J, et al. PTEN gene induces cell invasion and migration via regulating AKT/GSK-3beta/beta-catenin signaling pathway in human gastric cancer. Dig Dis Sci. 2017;62:3415–3425. https://doi.org/10.1007/s10620-017-4764-y

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda K, Maruyama H, Guo F, et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Can Res. 2001;61:5562–5569.

    CAS  Google Scholar 

  19. Aikawa T, Whipple CA, Lopez ME, et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest. 2008;118:89–99.

    Article  CAS  PubMed  Google Scholar 

  20. Qiao D, Yang H, Meyer K, Friedl A. Glypican-1 regulates anaphase promoting complex-cyclosome substrates and cell cycle progression in endothelial cells. Mol Biol Cell. 2008;19:2789–2801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianco C, Strizzi L, Rehman A, et al. A Nodal-and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Can Res. 2003;63:1192–1197.

    CAS  Google Scholar 

  22. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin DC, Hao JJ, Nagata Y, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haddadi N, Lin Y, Travis G, et al. PTEN/PTENP1: ‘regulating the regulator of RTK-dependent PI3 K/Akt signalling’, new targets for cancer therapy. Mol Cancer. 2018;17:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trotman LC, Pandolfi PP. PTEN and p53: who will get the upper hand? Cancer Cell. 2003;3:97–99.

    Article  CAS  PubMed  Google Scholar 

  26. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001;98:11598–11603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi J, Yu Y, Akilli Ozturk O, et al. New Wnt/beta-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut. 2016;65:1690–1701.

    Article  CAS  PubMed  Google Scholar 

  28. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142:219–232.

    Article  CAS  PubMed  Google Scholar 

  29. Mulholland DJ, Dedhar S, Wu H, Nelson CC. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene. 2006;25:329–337.

    Article  CAS  PubMed  Google Scholar 

  30. Grossmann AH, Yoo JH, Clancy J, et al. The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal. 2013;6:14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Shanghai Sailing Program (No. 16YF1401500), National Nature Science Foundation of China (Nos. 81301820, 81472673, 81672720, 81672334), the Fund of Shanghai Science and Technology Commission(16ZR1406100), and the National Clinical Key Special Subject of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, Y., Zhan, C. et al. Glypican-1 Promotes Tumorigenesis by Regulating the PTEN/Akt/β-Catenin Signaling Pathway in Esophageal Squamous Cell Carcinoma. Dig Dis Sci 64, 1493–1502 (2019). https://doi.org/10.1007/s10620-019-5461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-5461-9

Keywords

Navigation