Advertisement

Early Treatment Uptake and Cost Burden of Hepatitis C Therapies Among Newly Diagnosed Hepatitis C Patients with a Particular Focus on HIV Coinfection

  • Sascha van Boemmel-Wegmann
  • Vincent Lo ReIII
  • Haesuk ParkEmail author
Original Article

Abstract

Background

Despite the high efficacy and safety associated with direct-acting antivirals (DAAs), access to HCV treatment has been frequently restricted because of the high DAA drug costs.

Objectives

To (1) compare HCV treatment initiation rates between HCV monoinfected and HCV/HIV coinfected patients before (pre-DAA period) and after (post-DAA period) all-oral DAAs became available; and to (2) estimate the HCV treatment costs for payers and patients.

Research Design and Methods

A retrospective analysis of the MarketScan® Databases (2009–2016) was conducted for newly diagnosed HCV patients. Multivariable logistic regression was used to estimate the odds ratio (OR) of initiating HCV treatments during the pre-DAA and post-DAA periods. Kruskal–Wallis test was used to compare drug costs for dual, triple and all-oral therapies.

Results

A total of 15,063 HCV patients [382 (2.5%) HIV coinfected] in the pre-DAA period and 14,896 [429 (2.9%) HIV coinfected] in the post-DAA period were included. HCV/HIV coinfected patients had lower odds of HCV treatment uptake compared to HCV monoinfected patients during the pre-DAA period [OR, 0.59; 95% confidence interval (CI), 0.45–0.78], but no significant difference in odds of HCV treatment uptake was observed during the post-DAA period (OR, 1.08; 95% CI, 0.87–1.33). From 2009 to 2016, average payers’ treatment costs (dual, $20,820; all-oral DAAs, $99,661; p < 0.001) as well as average patients’ copayments (dual, $593; all-oral DAAs $933; p < 0.001) increased significantly.

Conclusions

HCV treatment initiation rates increased, especially among HCV/HIV coinfected patients, from the pre-DAA to the post-DAA period. However, payers’ expenditures per course of therapy saw an almost fivefold increase and patients’ copayments increased by 55%.

Keywords

Hepatitis C HIV Coinfection Treatment initiation Drug costs 

Abbreviations

ART

Antiretroviral therapy

CI

Confidence intervals

DAAs

Direct-acting antiviral agents

HCPCS

Healthcare Common Procedure Coding System

HCV

Hepatitis C virus

HIV

Human immunodeficiency virus

ICD

International Classification of Diseases

NDC

National Drug Code

OECD

Organisation for Economic Co-operation and Development

OR

Odds ratio

pegIFN

(Pegylated) interferon

RBV

Ribavirin

SD

Standard deviation

SVR

Sustained virologic response

VHA

Veterans Health Administration

Notes

Acknowledgment

Research reported in this publication was supported in part by the National Institute on Drug Abuse of the National Institutes of Health under Award No. K01DA045618 (to HP).

References

  1. 1.
    Bosh KA, Coyle JR, Hansen V, et al. HIV and viral hepatitis coinfection analysis using surveillance data from 15 US states and two cities. Epidemiol Infect. 2018;146:920–930.  https://doi.org/10.1017/s0950268818000766.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sulkowski MS, Mast EE, Seeff LB, Thomas DL. Hepatitis C virus infection as an opportunistic disease in persons infected with human immunodeficiency virus. Clin Infect Dis. 2000;30:S77–S84.CrossRefGoogle Scholar
  3. 3.
    Rosenberg SD, Drake RE, Brunette MF, Wolford GL, Marsh BJ. Hepatitis C virus and HIV co-infection in people with severe mental illness and substance use disorders. AIDS. 2005;19:S26–S33.CrossRefGoogle Scholar
  4. 4.
    Bini EJ, Currie SL, Shen H, et al. National multicenter study of HIV testing and HIV seropositivity in patients with chronic hepatitis C virus infection. J Clin Gastroenterol. 2006;40:732–739.CrossRefGoogle Scholar
  5. 5.
    Bani-Sadr F, Lapidus N, Bedossa P, et al. Progression of fibrosis in HIV and hepatitis C virus-coinfected patients treated with interferon plus ribavirin-based therapy: analysis of risk factors. Clin Infect Dis. 2008;46:768–774.  https://doi.org/10.1086/527565.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen TY, Ding EL, Seage Iii GR, Kim AY. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin Infect Dis. 2009;49:1605–1615.  https://doi.org/10.1086/644771.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    AASLD/IDSA. Recommendations for testing, managing, and treating hepatitis C. available at: http://Www.hcvguidelines.org. Updated: September 21, 2017; Accessed 30.03.18.
  8. 8.
    Iyengar S, Tay-Teo K, Vogler S, et al. Prices, costs, and affordability of new medicines for hepatitis C in 30 countries: an economic analysis. PLoS Med. 2016;13:e1002032.  https://doi.org/10.1371/journal.pmed.1002032.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Trooskin SB, Reynolds H, Kostman JR. Access to costly new hepatitis C drugs: medicine, money, and advocacy. Clin Infect Dis. 2015;61:1825–1830.  https://doi.org/10.1093/cid/civ677.CrossRefPubMedGoogle Scholar
  10. 10.
    Lo Re V III, Gowda C, Urick PN, et al. Disparities in absolute denial of modern hepatitis C therapy by type of insurance. Clin Gastroenterol Hepatol. 2016;14:1035–1043.  https://doi.org/10.1016/j.cgh.2016.03.040.CrossRefPubMedGoogle Scholar
  11. 11.
    Gowda C, Lott S, Grigorian M, et al. Absolute insurer denial of direct-acting antiviral therapy for hepatitis C: a national specialty pharmacy cohort study. Open Forum Infect Dis. 2018;5:ofy076.  https://doi.org/10.1093/ofid/ofy076.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abara WE, Moorman AC, Zhong Y, et al. The predictive value of international classification of disease codes for chronic hepatitis C virus infection surveillance: the utility and limitations of electronic health records. Popul Health Manag. 2018;21:110–115.  https://doi.org/10.1089/pop.2017.0004.CrossRefGoogle Scholar
  13. 13.
    Bailey DE Jr, Barroso J, Muir AJ, et al. Patients with chronic hepatitis C undergoing watchful waiting: exploring trajectories of illness uncertainty and fatigue. Res Nurs Health. 2010;33:465–473.  https://doi.org/10.1002/nur.20397.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    US Bureau of Economic Analysis. GDP & personal income, table 2.5.4. price indexes for personal consumption expenditures by function. https://www.bea.gov/ updated: Aug 3, 2017; Accessed 25.04.18.
  15. 15.
    Park H, Chen C, Wang W, Henry L, Cook RL, Nelson DR. Chronic hepatitis C virus (HCV) increases the risk of chronic kidney disease (CKD) while effective HCV treatment decreases the incidence of CKD. Hepatology. 2017;.  https://doi.org/10.1002/hep.29505.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oramasionwu CU, Kashuba AD, Napravnik S, Wohl DA, Mao L, Adimora AA. Non-initiation of hepatitis C virus antiviral therapy in patients with human immunodeficiency virus/hepatitis C virus co-infection. World J Hepatol. 2016;8:368–375.  https://doi.org/10.4254/wjh.v8.i7.368.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cope R, Glowa T, Faulds S, McMahon D, Prasad R. Treating hepatitis C in a ryan white-funded HIV clinic: has the treatment uptake improved in the interferon-free directly active antiviral era? AIDS Patient Care STDS. 2016;30:51–55.  https://doi.org/10.1089/apc.2015.0222.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oramasionwu CU, Moore HN, Toliver JC. Barriers to hepatitis C antiviral therapy in HIV/HCV co-infected patients in the United States: a review. AIDS Patient Care STDS. 2014;28:228–239.  https://doi.org/10.1089/apc.2014.0033.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Butt AA, Justice AC, Skanderson M, Good C, Kwoh CK. Rates and predictors of hepatitis C virus treatment in HCV–HIV-coinfected subjects. Aliment Pharmacol Ther. 2006;24:585–591.CrossRefGoogle Scholar
  20. 20.
    Goulet JL, Fultz SL, McGinnis KA, Justice AC. Relative prevalence of comorbidities and treatment contraindications in HIV-mono-infected and HIV/HCV-co-infected veterans. AIDS. 2005;19:S99–105.CrossRefGoogle Scholar
  21. 21.
    Hecke TV. Power study of anova versus Kruskal–Wallis test. J Stat Manag Syst. 2012;15:241–247.  https://doi.org/10.1080/09720510.2012.10701623.CrossRefGoogle Scholar
  22. 22.
    Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252.  https://doi.org/10.1080/00401706.1964.10490181.CrossRefGoogle Scholar
  23. 23.
    Collins LF, Chan A, Zheng J, et al. Direct-acting antivirals improve access to care and cure for patients with HIV and chronic HCV infection. Open Forum Infect Dis. 2017;5:ofx264.  https://doi.org/10.1093/ofid/ofx264.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barnett PG, Joyce VR, Lo J, et al. Effect of interferon-free regimens on disparities in hepatitis C treatment of US veterans. Value Health. 2018;21:921–930.CrossRefGoogle Scholar
  25. 25.
    Saeed S, Strumpf EC, Moodie EE, et al. Disparities in direct acting antivirals uptake in HIV-hepatitis C co-infected populations in canada. J Int AIDS Soc. 2017;.  https://doi.org/10.1002/jia2.25013.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wong RJ, Jain MK, Therapondos G, et al. Race/ethnicity and insurance status disparities in access to direct acting antivirals for hepatitis C virus treatment. Am J Gastroenterol. 2018;113:1329–1338.  https://doi.org/10.1038/s41395-018-0033-8.CrossRefPubMedGoogle Scholar
  27. 27.
    Jain MK, Thamer M, Therapondos G, et al. Has access to hepatitis C virus therapy changed for patients with mental health or substance use disorders in the direct-acting-antiviral period? Hepatology. 2019;69:51–63.  https://doi.org/10.1002/hep.30171.CrossRefPubMedGoogle Scholar
  28. 28.
    Meissner EG. Update in HIV-hepatitis C virus coinfection in the direct acting antiviral era. Curr Opin Gastroenterol. 2017;33:120–127.  https://doi.org/10.1097/mog.0000000000000347.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu. EASL recommendations on treatment of hepatitis C 2016. J Hepatol. 2016;66:153–194.Google Scholar
  30. 30.
    Van Thiel DH, Anantharaju A, Creech S. Response to treatment of hepatitis C in individuals with a recent history of intravenous drug abuse. Am J Gastroenterol. 2003;98:2281–2288.CrossRefGoogle Scholar
  31. 31.
    Dimova RB, Zeremski M, Jacobson IM, Hagan H, Des Jarlais DC, Talal AH. Determinants of hepatitis C virus treatment completion and efficacy in drug users assessed by meta-analysis. Clin Infect Dis. 2013;56:806–816.  https://doi.org/10.1093/cid/cis1007.CrossRefPubMedGoogle Scholar
  32. 32.
    Aspinall EJ, Corson S, Doyle JS, et al. Treatment of hepatitis C virus infection among people who are actively injecting drugs: a systematic review and meta-analysis. Clin Infect Dis. 2013;57:S80–S89.  https://doi.org/10.1093/cid/cit306.CrossRefPubMedGoogle Scholar
  33. 33.
    Alavi M, Spelman T, Matthews GV, et al. Injecting risk behaviours following treatment for hepatitis C virus infection among people who inject drugs: the Australian trial in acute hepatitis C. Int J Drug Policy. 2015;26:976–983.  https://doi.org/10.1016/j.drugpo.2015.05.003.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ghany MG, Strader DB, Thomas DL, Seeff LB. American Association for the Study of Liver Diseases: diagnosis, management, and treatment of hepatitis C: an update. Hepatology. 2009;49:1335–1374.  https://doi.org/10.1002/hep.22759.CrossRefPubMedGoogle Scholar
  35. 35.
    Sinnott SJ, Buckley C, O’Riordan D, Bradley C, Whelton H. The effect of copayments for prescriptions on adherence to prescription medicines in publicly insured populations; a systematic review and meta-analysis. PLoS ONE. 2013;8:64914.  https://doi.org/10.1371/journal.pone.0064914.CrossRefGoogle Scholar
  36. 36.
    Chhatwal J, He T, Hur C, Lopez-Olivo MA. Direct-acting antiviral agents for patients with hepatitis C virus genotype 1 infection are cost-saving. Clin Gastroenterol Hepatol. 2017;15:827–837.e8.CrossRefGoogle Scholar
  37. 37.
    He T, Lopez-Olivo MA, Hur C, Chhatwal J. Systematic review: cost-effectiveness of direct-acting antivirals for treatment of hepatitis C genotypes 2–6. Aliment Pharmacol Ther. 2017;46:711–721.  https://doi.org/10.1111/apt.14271.CrossRefPubMedGoogle Scholar
  38. 38.
    Simon RE, Pearson SD, Hur C, Chung RT. Tackling the hepatitis C cost problem: a test case for tomorrow’s cures. Hepatology. 2015;62:1334–1336.  https://doi.org/10.1002/hep.28157.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleUSA
  2. 2.Division of Infectious Diseases, Department of Medicine and Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations