Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice

  • Tien S. DongEmail author
  • John P. Vu
  • Suwan Oh
  • Daniel Sanford
  • Joseph R. Pisegna
  • Patrizia Germano
Original Article



Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus–pituitary–gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones.


Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured.


Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04).


A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.


Kisspeptin-10 Metabolism Insulin Leptin Resistin 



Grant support NIH T32 DK 07180 (TD).

Compliance with Ethical Standards

Conflict of interest

The authors have no potential conflict of interest to disclose.

Ethical approval

All animal research procedures were approved by the Department of Veterans Affair Institutional Animal Care and Use Committee (Protocol #03016-05).


  1. 1.
    Lee JH, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88:1731–1737.PubMedCrossRefGoogle Scholar
  2. 2.
    Uenoyama Y, Pheng V, Tsukamura H, Maeda K-I. The roles of kisspeptin revisited: inside and outside the hypothalamus. J Reprod Dev. 2016;62:537–545.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–1627.PubMedCrossRefGoogle Scholar
  4. 4.
    Tng EL. Kisspeptin signalling and its roles in humans. Singap Med J. 2015;56:649–656.CrossRefGoogle Scholar
  5. 5.
    Kirby HR, Maguire JJ, Colledge WH, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol Rev. 2010;62:565–578.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Muir AI, Chamberlain L, Elshourbagy NA, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276:28969–28975.PubMedCrossRefGoogle Scholar
  7. 7.
    Stengel A, Wang L, Goebel-Stengel M, Taché Y. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011;22:253–257.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. Brain Res. 2010;1364:129–138.PubMedCrossRefGoogle Scholar
  9. 9.
    Pasquier J, Kamech N, Lafont A-G, Vaudry H, Rousseau K, Dufour S. Molecular evolution of GPCRs: kisspeptin/kisspeptin receptors. J Mol Endocrinol. 2014;52:T101–T117.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kalamatianos T, Grimshaw SE, Poorun R, Hahn JD, Coen CW. Fasting reduces KiSS-1 expression in the anteroventral periventricular nucleus (AVPV): effects of fasting on the expression of KiSS-1 and neuropeptide Y in the AVPV or arcuate nucleus of female rats. J Neuroendocrinol. 2008;20:1089–1097.PubMedCrossRefGoogle Scholar
  11. 11.
    Castellano JM, Navarro VM, Fernández-Fernández R, et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005;146:3917–3925.PubMedCrossRefGoogle Scholar
  12. 12.
    Vu JP, Luong L, Parsons WF, et al. Long-term intake of a high-protein diet affects body phenotype, metabolism, and plasma hormones in mice. J Nutr. 2017;147:2243–2251.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Morton GJ, Thatcher BS, Reidelberger RD, et al. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am J Physiol Endocrinol Metab. 2012;302:E134–E144.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang T, Cui X, Xie L, et al. Kisspeptin receptor GPR54 promotes adipocyte differentiation and fat accumulation in mice. Front Physiol. 2018;9:209.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wolfe A, Hussain MA. The emerging role(s) for kisspeptin in metabolism in mammals. Front Endocrinol (Lausanne). 2018;9:184.CrossRefGoogle Scholar
  16. 16.
    Tolson KP, Garcia C, Yen S, et al. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Investig. 2014;124:3075–3079.PubMedCrossRefGoogle Scholar
  17. 17.
    Knight WD, Witte MM, Parsons AD, Gierach M, Overton JM. Long-term caloric restriction reduces metabolic rate and heart rate under cool and thermoneutral conditions in FBNF1 rats. Mech Ageing Dev. 2011;132:220–229.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    De Bond J-AP, Tolson KP, Nasamran C, Kauffman AS, Smith JT. Unaltered hypothalamic metabolic gene expression in Kiss1r knockout mice despite obesity and reduced energy expenditure. J Neuroendocrinol. 2016;. Scholar
  19. 19.
    Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18:298–303.PubMedCrossRefGoogle Scholar
  21. 21.
    Quennell JH, Mulligan AC, Tups A, et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150:2805–2812.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Backholer K, Smith JT, Rao A, et al. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology. 2010;151:2233–2243.PubMedCrossRefGoogle Scholar
  23. 23.
    Cravo RM, Margatho LO, Osborne-Lawrence S, et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience. 2011;173:37–56.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology. 2011;152:1541–1550.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Castellano JM, Navarro VM, Fernández-Fernández R, et al. Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes. 2006;55:2602–2610.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology. 2007;148:4601–4611.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zhu HJ, Li SJ, Pan H, et al. The changes of serum leptin and kisspeptin levels in Chinese children and adolescents in different pubertal stages. Int J Endocrinol. 2016;2016:6790794.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pandit R, Beerens S, Adan RAH. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Integr Comp Physiol. 2017;312:R938–R947.CrossRefGoogle Scholar
  29. 29.
    Hukshorn CJ, Saris WHM. Leptin and energy expenditure. Curr Opin Clin Nutr Metab Care. 2004;7:629–633.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Nogueiras R, Novelle MG, Vazquez MJ, Lopez M, Dieguez C. Resistin: regulation of food intake, glucose homeostasis and lipid metabolism. Endocr Dev. 2010;17:175–184.PubMedCrossRefGoogle Scholar
  31. 31.
    Morash BA, Willkinson D, Ur E, Wilkinson M. Resistin expression and regulation in mouse pituitary. FEBS Lett. 2002;526:26–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Cifani C, Durocher Y, Pathak A, et al. Possible common central pathway for resistin and insulin in regulating food intake. Acta Physiol (Oxf). 2009;196:395–400.CrossRefGoogle Scholar
  33. 33.
    Tovar S, Nogueiras R, Tung LYC, et al. Central administration of resistin promotes short-term satiety in rats. Eur J Endocrinol. 2005;153:R1–R5.PubMedCrossRefGoogle Scholar
  34. 34.
    Hauge-Evans AC, Richardson CC, Milne HM, Christie MR, Persaud SJ, Jones PM. A role for kisspeptin in islet function. Diabetologia. 2006;49:2131–2135.PubMedCrossRefGoogle Scholar
  35. 35.
    Song W-J, Mondal P, Wolfe A, et al. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014;19:667–681.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Andreozzi F, Mannino GC, Mancuso E, Spiga R, Perticone F, Sesti G. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals. PLoS One. 2017;12:e0179834.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schwetz TA, Reissaus CA, Piston DW. Differential stimulation of insulin secretion by GLP-1 and Kisspeptin-10. PLoS One. 2014;9:e113020.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bowe JE, King AJ, Kinsey-Jones JS, et al. Kisspeptin stimulation of insulin secretion: mechanisms of action in mouse islets and rats. Diabetologia. 2009;52:855–862.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu J, Fu W, Huang Y, Ni Y. Effects of kisspeptin-10 on lipid metabolism in cultured chicken hepatocytes. Asian Australas J Anim Sci. 2012;25:1229–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Aydin M, Oktar S, Yonden Z, Ozturk OH, Yilmaz B. Direct and indirect effects of kisspeptin on liver oxidant and antioxidant systems in young male rats. Cell Biochem Funct. 2010;28:293–299.PubMedCrossRefGoogle Scholar
  41. 41.
    Lecoultre V, Ravussin E, Redman LM. The fall in leptin concentration is a major determinant of the metabolic adaptation induced by caloric restriction independently of the changes in leptin circadian rhythms. J Clin Endocrinol Metab. 2011;96:E1512–E1516.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jakobsdottir S, van Nieuwpoort IC, van Bunderen CC, et al. Acute and short-term effects of caloric restriction on metabolic profile and brain activation in obese, postmenopausal women. Int J Obes (Lond). 2016;40:1671–1678.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human GeneticsVA Greater Los Angeles Healthcare SystemLos AngelesUSA
  3. 3.AbbVieSunnyvaleUSA
  4. 4.Research ServiceVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUSA
  5. 5.CURE/Digestive Diseases Research Center, Department of MedicineUniversity of CaliforniaLos AngelesUSA
  6. 6.Division of Pulmonary and Critical CareVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUSA

Personalised recommendations