The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases

  • Shaun S. C. Ho
  • Jacqueline I. Keenan
  • Andrew S. DayEmail author


The fatty acid-binding proteins play a major role in intracellular transportation of long-chain fatty acids. Nine fatty acid-binding proteins have been identified, with each having individual tissue-specific functions in addition to regulation of fatty acids. This review focuses on the three fatty acid-binding proteins found in the gastrointestinal tract and discusses their role as diagnostic or disease monitoring markers in neonatal necrotizing enterocolitis, acute mesenteric ischemia, celiac disease, and inflammatory bowel disease. Of these three fatty acid-binding proteins, intestinal fatty acid-binding protein is of the most interest due to its exclusive expression in the gastrointestinal tract. The elevation of intestinal fatty acid-binding protein in blood and urine reflects enterocyte damage, regardless of the underlying cause. The short half-life of intestinal fatty acid-binding protein also means it is a relatively sensitive marker. In contrast, there is currently less evidence to support liver fatty acid-binding protein and ileal bile acid-binding protein as sensitive biomarkers in these conditions. More extensive studies with specific endpoints are required to validate the roles of these fatty acid-binding proteins in gastrointestinal diseases.


Intestinal fatty acid-binding protein Liver fatty acid-binding protein Neonatal necrotizing enterocolitis Acute mesenteric ischemia Celiac disease Inflammatory bowel disease 


Conflicts of interest

The authors declare that they have no conflict of interest.


SSCH is supported by a Freemasons Paediatric Postgraduate Scholarship.


  1. 1.
    Ockner RK, Manning JA, Poppenhausen RB, Ho WK. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science.. 1972;177:56–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet.. 2006;47:39–48. Scholar
  3. 3.
    Storch J, Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. The Journal of biological Chem.. 2010;285:32679–32683. Scholar
  4. 4.
    Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, et al. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids.. 2017;1862:1587–1594. Scholar
  5. 5.
    Lagakos WS, Gajda AM, Agellon L, et al. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol.. 2011;300:G803–G814. Scholar
  6. 6.
    Bottasso Arias NM, Garcia M, Bondar C, et al. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy. Mediators Inflamm.. 2015;2015:738563. Scholar
  7. 7.
    Derikx JP, Vreugdenhil AC, Van den Neucker AM, et al. A pilot study on the noninvasive evaluation of intestinal damage in celiac disease using I-FABP and L-FABP. J Clin Gastroenterol.. 2009;43:727–733. Scholar
  8. 8.
    Pelsers MMAL, Namiot Z, Kisielewski W, et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem.. 2003;36:529–535. Scholar
  9. 9.
    Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov.. 2008;7:489–503. Scholar
  10. 10.
    Praslickova D, Torchia EC, Sugiyama MG, et al. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine. PLoS One.. 2012;7:e50810. Scholar
  11. 11.
    van de Poll MC, Derikx JP, Buurman WA, et al. Liver manipulation causes hepatocyte injury and precedes systemic inflammation in patients undergoing liver resection. World J Surg.. 2007;31:2033–2038. Scholar
  12. 12.
    Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care.. 2014;17:124–129. Scholar
  13. 13.
    Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res.. 2015;56:2238–2247. Scholar
  14. 14.
    Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet.. 2006;368:1271–1283. Scholar
  15. 15.
    McGuire W, Anthony MY. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic review. Arch Dis Child Fetal Neonatal Ed.. 2003;88:F11–F14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee JS, Polin RA. Treatment and prevention of necrotizing enterocolitis. Semin Neonatol.. 2003;8:449–459. Scholar
  17. 17.
    Yang G, Wang Y, Jiang X. Diagnostic value of intestinal fatty-acid-binding protein in necrotizing enterocolitis: a systematic review and meta-analysis. Indian J Pediatr.. 2016;83:1410–1419. Scholar
  18. 18.
    Liu Y, Jiang L-F, Zhang R-P, Zhang W-T. Clinical significance of FABP2 expression in newborns with necrotizing enterocolitis. World J Pediatr WJP.. 2016;12:159–165. Scholar
  19. 19.
    Cheng S, Yu J, Zhou M, Tu Y, Lu Q. Serologic intestinal-fatty acid binding protein in necrotizing enterocolitis diagnosis: a meta-analysis. BioMed Res Int.. 2015;2015:156704. Scholar
  20. 20.
    Lin JF, Chen JM, Zuo JH, et al. Meta-analysis: fecal calprotectin for assessment of inflammatory bowel disease activity. Inflamm Bowel Dis.. 2014;20:1407–1415. Scholar
  21. 21.
    Reisinger KW, Van der Zee DC, Brouwers HAA, et al. Noninvasive measurement of fecal calprotectin and serum amyloid A combined with intestinal fatty acid-binding protein in necrotizing enterocolitis. J Pediatr Surg.. 2012;47:1640–1645. Scholar
  22. 22.
    Benkoe T, Baumann S, Weninger M, et al. Comprehensive evaluation of 11 cytokines in premature infants with surgical necrotizing enterocolitis. PLoS One.. 2013;8:e58720. Scholar
  23. 23.
    Cho SX, Berger PJ, Nold-Petry CA, Nold MF. The immunological landscape in necrotising enterocolitis. Expert Rev Mol Med.. 2016;18:e12. Scholar
  24. 24.
    Terrin G, Stronati L, Cucchiara S, De Curtis M. Serum markers of necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr.. 2017;65:e120–e132. Scholar
  25. 25.
    Benkoe TM, Mechtler TP, Weninger M, Pones M, Rebhandl W, Kasper DC. Serum levels of interleukin-8 and gut-associated biomarkers in diagnosing necrotizing enterocolitis in preterm infants. J Pediatr Surg.. 2014;49:1446–1451. Scholar
  26. 26.
    Terrin G, Stronati L, Cucchiara S, De Curtis M. Serum markers of necrotizing enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr.. 2017;65:e120–e132. Scholar
  27. 27.
    Ng EW, Poon TC, Lam HS, et al. Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann Surg.. 2013;258:1111–1118. Scholar
  28. 28.
    Aydemir C, Dilli D, Oguz SS, et al. Serum intestinal fatty acid binding protein level for early diagnosis and prediction of severity of necrotizing enterocolitis. Early Hum Dev.. 2011;87:659–661. Scholar
  29. 29.
    Schurink M, Kooi EMW, Hulzebos CV, et al. Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS One.. 2015;10:e0121336. Scholar
  30. 30.
    Evennett NJ, Hall NJ, Pierro A, Eaton S. Urinary intestinal fatty acid-binding protein concentration predicts extent of disease in necrotizing enterocolitis. J Pediatr Surg.. 2010;45:735–740. Scholar
  31. 31.
    Heida FH, Hulscher JBF, Schurink M, et al. Intestinal fatty acid-binding protein levels in Necrotizing Enterocolitis correlate with extent of necrotic bowel: results from a multicenter study. J Pediatr Surg.. 2015;50:1115–1118. Scholar
  32. 32.
    Clair DG, Beach JM. Mesenteric Ischemia. N Engl J Med.. 2016;374:959–968. Scholar
  33. 33.
    Cudnik MT, Darbha S, Jones J, Macedo J, Stockton SW, Hiestand BC. The diagnosis of acute mesenteric ischemia: a systematic review and meta-analysis. Acad Emerg Med.. 2013;20:1087–1100. Scholar
  34. 34.
    Derikx JPM, Matthijsen RA, de Bruine AP, et al. Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation. PLoS One.. 2008;3:e3428. Scholar
  35. 35.
    Schellekens DHSM, Grootjans J, Dello SAWG, et al. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J Clin Gastroenterol.. 2014;48:253–260. Scholar
  36. 36.
    Cronk DR, Houseworth TP, Cuadrado DG, Herbert GS, McNutt PM, Azarow KS. Intestinal fatty acid binding protein (I-FABP) for the detection of strangulated mechanical small bowel obstruction. Curr Surg.. 2006;63:322–325. Scholar
  37. 37.
    Kittaka H, Akimoto H, Takeshita H, et al. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS One.. 2014;9:e99915. Scholar
  38. 38.
    Guzel M, Sozuer EM, Salt O, Ikizceli I, Akdur O, Yazici C. Value of the serum I-FABP level for diagnosing acute mesenteric ischemia. Surg Today.. 2014;44:2072–2076. Scholar
  39. 39.
    Shi H, Wu B, Wan J, Liu W, Su B. The role of serum intestinal fatty acid binding protein levels and d-lactate levels in the diagnosis of acute intestinal ischemia. Clin Res Hepatol Gastroenterol.. 2015;39:373–378. Scholar
  40. 40.
    Matsumoto S, Sekine K, Funaoka H, et al. Diagnostic performance of plasma biomarkers in patients with acute intestinal ischaemia. Br J Surg. 2014;101:232–238. Scholar
  41. 41.
    Kanda T, Tsukahara A, Ueki K, et al. Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: a multicenter, observer-blinded validation study. J Gastroenterol.. 2011;46:492–500. Scholar
  42. 42.
    van der Voort PHJ, Westra B, Wester JPJ, et al. Can serum l-lactate, d-lactate, creatine kinase and I-FABP be used as diagnostic markers in critically ill patients suspected for bowel ischemia. BMC Anesthesiol.. 2014;14:111. Scholar
  43. 43.
    Sun DL, Cen YY, Li SM, Li WM, Lu QP, Xu PY. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Sci Rep.. 2016;6:34371. Scholar
  44. 44.
    Thuijls G, van Wijck K, Grootjans J, et al. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann Surg.. 2011;253:303–308. Scholar
  45. 45.
    Singh P, Arora A, Strand TA, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol.. 2018;16:823–836. Scholar
  46. 46.
    Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet.. 2018;391:70–81. Scholar
  47. 47.
    Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol.. 1999;11:1185–1194.CrossRefPubMedGoogle Scholar
  48. 48.
    Husby S, Koletzko S, Korponay-Szabo IR, et al. European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr.. 2012;54:136–160. Scholar
  49. 49.
    Tortora R, Imperatore N, Capone P, et al. The presence of anti-endomysial antibodies and the level of anti-tissue transglutaminases can be used to diagnose adult coeliac disease without duodenal biopsy. Aliment Pharmacol Ther.. 2014;40:1223–1229. Scholar
  50. 50.
    Efthymakis K, Serio M, Milano A, et al. Application of the biopsy-sparing ESPGHAN guidelines for celiac disease diagnosis in adults: a real-life study. Dig Dis Sci.. 2017;62:2433–2439. Scholar
  51. 51.
    Adriaanse MPM, Tack GJ, Passos VL, et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther.. 2013;37:482–490. Scholar
  52. 52.
    Vreugdenhil AC, Wolters VM, Adriaanse MP, et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol.. 2011;46:1435–1441. Scholar
  53. 53.
    Adriaanse MPM, Mubarak A, Riedl RG, et al. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci Rep.. 2017;7:8671. Scholar
  54. 54.
    Leonard MM, Weir DC, DeGroote M, et al. Value of IgA tTG in predicting mucosal recovery in children with celiac disease on a gluten-free diet. J Pediatr Gastroenterol Nutr.. 2017;64:286–291. Scholar
  55. 55.
    Sharkey LM, Corbett G, Currie E, Lee J, Sweeney N, Woodward JM. Optimising delivery of care in coeliac disease—comparison of the benefits of repeat biopsy and serological follow-up. Aliment Pharmacol Ther.. 2013;38:1278–1291. Scholar
  56. 56.
    Vecsei E, Steinwendner S, Kogler H, et al. Follow-up of pediatric celiac disease: value of antibodies in predicting mucosal healing, a prospective cohort study. BMC Gastroenterol.. 2014;14:28. Scholar
  57. 57.
    Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology.. 2017;153:689–701. Scholar
  58. 58.
    Gidrewicz D, Trevenen CL, Lyon M, Butzner JD. Normalization time of celiac serology in children on a gluten-free diet. J Pediatr Gastroenterol Nutr.. 2017;64:362–367. Scholar
  59. 59.
    Gross S, Adriaanse MP, Nijeboer P, et al. Serum intestinal-fatty acid binding protein as a biomarker for refractory celiac disease. J Gastrointest Liver Dis JGLD.. 2015;24:258–259.Google Scholar
  60. 60.
    Oxentenko AS, Murray JA. Celiac disease: ten things that every gastroenterologist should know. Clin Gastroenterol Hepatol.. 2015;13:1396–1404. quiz e127-9.CrossRefPubMedGoogle Scholar
  61. 61.
    Murch S, Jenkins H, Auth M, et al. Joint BSPGHAN and Coeliac UK guidelines for the diagnosis and management of coeliac disease in children. Arch Dis Child.. 2013;98:806–811. Scholar
  62. 62.
    Adriaanse MPM, Leffler DA, Kelly CP, et al. Serum I-FABP detects gluten responsiveness in adult celiac disease patients on a short-term gluten challenge. Am J Gastroenterol.. 2016;111:1014–1022. Scholar
  63. 63.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med.. 2009;361:2066–2078. Scholar
  64. 64.
    Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet.. 2012;380:1590–1605. Scholar
  65. 65.
    Goodhand J, Dawson R, Hefferon M, et al. Inflammatory bowel disease in young people: the case for transitional clinics. Inflamm Bowel Dis.. 2010;16:947–952. Scholar
  66. 66.
    Levine A, de Bie CI, Turner D, et al. Atypical disease phenotypes in pediatric ulcerative colitis: 5-year analyses of the EUROKIDS Registry. Inflamm Bowel Dis.. 2013;19:370–377. Scholar
  67. 67.
    Sarikaya M, Ergul B, Dogan Z, Filik L, Can M, Arslan L. Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: a preliminary study. Clin Lab.. 2015;61:87–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Al-Saffar AK, Meijer CH, Gannavarapu VR, et al. Parallel changes in harvey-bradshaw index, TNFalpha, and intestinal fatty acid binding protein in response to infliximab in crohn’s disease. Gastroenterol Res Pract.. 2017;2017:1745918. Scholar
  69. 69.
    Bodelier AGL, Pierik MJ, Lenaerts K, et al. Plasma intestinal fatty acid-binding protein fails to predict endoscopic disease activity in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol.. 2016;28:807–813. Scholar
  70. 70.
    Wiercinska-Drapalo A, Jaroszewicz J, Siwak E, Pogorzelska J, Prokopowicz D. Intestinal fatty acid binding protein (I-FABP) as a possible biomarker of ileitis in patients with ulcerative colitis. Regul Pept.. 2008;147:25–28. Scholar
  71. 71.
    Meyers S, Sachar DB, Present DH, Janowitz HD. Olsalazine in the treatment of ulcerative colitis among patients intolerant of sulphasalazine: a prospective, randomized, placebo-controlled, double-blind, dose-ranging clinical trial. Scand J Gastroenterol Suppl.. 1988;148:29–37.CrossRefPubMedGoogle Scholar
  72. 72.
    Adriaanse MPM, van der Sande LJTM, van den Neucker AM, et al. Evidence for a cystic fibrosis enteropathy. PLoS One.. 2015;10:e0138062. Scholar
  73. 73.
    Derikx JPM, Blijlevens NMA, Donnelly JP, et al. Loss of enterocyte mass is accompanied by diminished turnover of enterocytes after myeloablative therapy in haematopoietic stem-cell transplant recipients. Ann Oncol Off J Eur Soc Med Oncol.. 2009;20:337–342. Scholar
  74. 74.
    Kaufman SS, Lyden ER, Marks WH, et al. Lack of utility of intestinal fatty acid binding protein levels in predicting intestinal allograft rejection. Transplantation.. 2001;71:1058–1060.CrossRefPubMedGoogle Scholar
  75. 75.
    Balesaria S, Pell RJ, Abbott LJ, et al. Exploring possible mechanisms for primary bile acid malabsorption: evidence for different regulation of ileal bile acid transporter transcripts in chronic diarrhoea. Eur J Gastroenterol Hepatol.. 2008;20:413–422. Scholar
  76. 76.
    Relja B, Szermutzky M, Henrich D, et al. Intestinal-FABP and liver-FABP: Novel markers for severe abdominal injury. Acad Emerg Med Off J Soc Acad Emerg Med.. 2010;17:729–735. Scholar
  77. 77.
    Timmermans K, Sir O, Kox M, et al. Circulating iFABP Levels as a marker of intestinal damage in trauma patients. Shock (Augusta, Ga).. 2015;43:117–120. Scholar
  78. 78.
    Shi J, Zhang Y, Gu W, et al. Serum liver fatty acid binding protein levels correlate positively with obesity and insulin resistance in Chinese young adults. PLoS One.. 2012;7:e48777. Scholar
  79. 79.
    Gollin G, Stadie D, Mayhew J, et al. Early detection of impending necrotizing enterocolitis with urinary intestinal fatty acid-binding protein. Neonatology.. 2014;106:195–200. Scholar
  80. 80.
    Coufal S, Kokesova A, Tlaskalova-Hogenova H, Snajdauf J, Rygl M, Kverka M. Urinary intestinal fatty acid-binding protein can distinguish necrotizing enterocolitis from sepsis in early stage of the disease. J Immunol Res.. 2016;2016:5727312. Scholar
  81. 81.
    Thuijls G, Derikx JPM, van Wijck K, et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann Surg.. 2010;251:1174–1180. Scholar
  82. 82.
    Gregory KE, Winston AB, Yamamoto HS, et al. Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis. J Pediatr.. 2014;164:1486–1488. Scholar
  83. 83.
    Mannoia K, Boskovic DS, Slater L, Plank MS, Angeles DM, Gollin G. Necrotizing enterocolitis is associated with neonatal intestinal injury. J Pediatr Surg.. 2011;46:81–85. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PaediatricsUniversity of Otago ChristchurchChristchurchNew Zealand
  2. 2.Department of SurgeryUniversity of Otago ChristchurchChristchurchNew Zealand

Personalised recommendations