Digestive Diseases and Sciences

, Volume 64, Issue 10, pp 2867–2877 | Cite as

Lactobacillus rhamnosus GG Ameliorates Liver Injury and Hypoxic Hepatitis in Rat Model of CLP-Induced Sepsis

  • Lei Ding
  • Yihang Gong
  • Zhengfei Yang
  • Baojia Zou
  • Xialei Liu
  • Baimeng Zhang
  • Jian LiEmail author
Original Article



Probiotic use to prevent gastrointestinal infections in critical care has shown great promise in recent clinical trials. Although well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to ameliorate liver injury and hypoxic hepatitis following sepsis has not been well explored.


In order to evaluate, if Lactobacillus rhamnosus GG (LGG) treatment in septic rats will protect against liver injury, this study used 20–22-week-old Sprague–Dawley rats which were subjected to cecal ligation and puncture to establish sepsis model and examine mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α in the liver via real-time PCR, Elisa and Western blot.


This study showed that LGG treatment significantly ameliorated liver injury following experimental infection and sepsis. Liver mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α were significantly reduced in rats receiving LGG.


Thus, our study demonstrated that LGG treatment can reduce liver injury following experimental infection and sepsis and is associated with improved hypoxic hepatitis. Probiotic therapy may be a promising intervention to ameliorate clinical liver injury and hypoxic hepatitis following systemic infection and sepsis.


Probiotic Lactobacillus rhamnosus GG (LGG) IL-1β NLRP3 IL-6 TNF-a VEGF MCP1 HIF-1α NF-kB Liver injury Ligation and puncture (CLP) Sepsis 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Vincent JL, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2:380–386.CrossRefGoogle Scholar
  2. 2.
    Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–272.CrossRefGoogle Scholar
  3. 3.
    Iwashyna TJ, Cooke CR, Wunsch H, Kahn JM. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60:1070–1077.CrossRefGoogle Scholar
  4. 4.
    Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–1174.CrossRefGoogle Scholar
  5. 5.
    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–810.CrossRefGoogle Scholar
  6. 6.
    Henrion J, Schapira M, Luwaert R, Colin L, Delannoy A, Heller FR. Hypoxic hepatitis: clinical and hemodynamic study in 142 consecutive cases. Medicine (Baltimore). 2003;82:392–406.CrossRefGoogle Scholar
  7. 7.
    Fuhrmann V, Madl C, Mueller C, et al. Hepatopulmonary syndrome in patients with hypoxic hepatitis. Gastroenterology. 2006;131:69–75.CrossRefGoogle Scholar
  8. 8.
    Whitehead MW, Hawkes ND, Hainsworth I, Kingham JG. A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut. 1999;45:129–133.CrossRefGoogle Scholar
  9. 9.
    Birrer R, Takuda Y, Takara T. Hypoxic hepatopathy: pathophysiology and prognosis. Intern Med. 2007;46:1063–1070.CrossRefGoogle Scholar
  10. 10.
    Fuhrmann V, Kneidinger N, Herkner H, et al. Impact of hypoxic hepatitis on mortality in the intensive care unit. Intensive Care Med. 2011;37:1302–1310.CrossRefGoogle Scholar
  11. 11.
    Cui Y, Shan Y, Chen R, Wang C, Zhang Y. Elevated serum total bilirubin level is associated with poor outcomes in pediatric patients with sepsis-associated liver injury. Can J Infect Dis Med Microbiol. 2018;2018:4591729.CrossRefGoogle Scholar
  12. 12.
    Prescott HC, Dickson RP, Rogers MA, Langa KM, Iwashyna TJ. Hospitalization type and subsequent severe sepsis. Am J Respir Crit Care Med. 2015;192:581–588.CrossRefGoogle Scholar
  13. 13.
    Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017;2:135–143.CrossRefGoogle Scholar
  14. 14.
    Hammerman C, Bin-Nun A, Kaplan M. Germ warfare: probiotics in defense of the premature gut. Clin Perinatol. 2004;31:489–500.CrossRefGoogle Scholar
  15. 15.
    Liu DQ, Gao QY, Liu HB, Li DH, Wu SW. Probiotics improve survival of septic rats by suppressing conditioned pathogens in ascites. World J Gastroenterol. 2013;19:4053–4059.CrossRefGoogle Scholar
  16. 16.
    Khailova L, Frank DN, Dominguez JA, Wischmeyer PE. Probiotic administration reduces mortality and improves intestinal epithelial homeostasis in experimental sepsis. Anesthesiology. 2013;119:166–177.CrossRefGoogle Scholar
  17. 17.
    Arribas B, Rodriguez-Cabezas ME, Camuesco D, et al. A probiotic strain of Escherichia coli, Nissle, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br J Pharmacol. 1917;157(2009):1024–1033.Google Scholar
  18. 18.
    Khailova L, Petrie B, Baird CH, Rieg JAD, Wischmeyer PE. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS ONE. 2014;9:e97861.CrossRefGoogle Scholar
  19. 19.
    Boyle RJ, Robins-Browne RM, Tang MLK. Probiotic use in clinical practice: What are the risks? Am J Clin Nutr. 2006;83:1256–1264.CrossRefGoogle Scholar
  20. 20.
    Parker SJ, Watkins PE. Experimental models of gram-negative sepsis. Br J Surg. 2001;88:22–30.CrossRefGoogle Scholar
  21. 21.
    Toscano MG, Ganea D, Gamero AM. Cecal ligation puncture procedure. J Vis Exp. 2011;51:e2860.Google Scholar
  22. 22.
    Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–36.CrossRefGoogle Scholar
  23. 23.
    Baker CC, Chaudry IH, Gaines HO, Baue AE. Evaluation of factors affecting mortality-rate after sepsis in a murine cecal ligation and puncture model. Surgery. 1983;94:331–335.Google Scholar
  24. 24.
    Kleszczynski K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (gamma-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res. 2016;61:187–197.CrossRefGoogle Scholar
  25. 25.
    Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem. 2005;93:47–52.CrossRefGoogle Scholar
  26. 26.
    Wu C, Li X, Zhang D, et al. IL-1beta-mediated up-regulation of WT1D via miR-144-3p and their synergistic effect with NF-kappaB/COX-2/HIF-1alpha pathway on cell proliferation in LUAD. Cell Physiol Biochem. 2018;48:2493–2502.CrossRefGoogle Scholar
  27. 27.
    Zhan CY, Chen D, Luo JL, Shi YH, Zhang YP. Protective role of down-regulated microRNA-31 on intestinal barrier dysfunction through inhibition of NF-kappaB/HIF-1alpha pathway by binding to HMOX1 in rats with sepsis. Mol Med. 2018;24:55.CrossRefGoogle Scholar
  28. 28.
    Taylor CT, Cummins EP. The role of NF-kappaB in hypoxia-induced gene expression. Ann N Y Acad Sci. 2009;1177:178–184.CrossRefGoogle Scholar
  29. 29.
    Gorlach A, Bonello S. The cross-talk between NF-kappa B and HIF-1: further evidence for a significant liaison (vol 412, p e17. Biochem J. 2008;413(2008):571.CrossRefGoogle Scholar
  30. 30.
    McDonald D, Ackermann G, Khailova L, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1:e00199-16.CrossRefGoogle Scholar
  31. 31.
    Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016;4:59–72.CrossRefGoogle Scholar
  32. 32.
    Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1–20.CrossRefGoogle Scholar
  33. 33.
    Tian F, Chi F, Wang G, et al. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. J Microbiol. 2015;53:856–863.CrossRefGoogle Scholar
  34. 34.
    Yan F, Polk DB. Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 2012;3:25–28.CrossRefGoogle Scholar
  35. 35.
    van Baarlen P, Troost F, van der Meer C, et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci USA. 2011;108:4562–4569.CrossRefGoogle Scholar
  36. 36.
    Ashraf R, Shah NP. Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr. 2014;54:938–956.CrossRefGoogle Scholar
  37. 37.
    Ye HQ, Li Q, Zhang ZZ, Sun MC, Zhao CH, Zhang TH. Effect of a novel potential probiotic Lactobacillus paracasei Jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats. Food Funct. 2017;8:4539–4546.CrossRefGoogle Scholar
  38. 38.
    Aller R, de Luis DA, Izaola O, et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci. 2011;15:1090–1095.Google Scholar
  39. 39.
    Bouhafs L, Moudilou EN, Exbrayat JM, Lahouel M, Idoui T. Protective effects of probiotic Lactobacillus plantarum BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. Renal Fail. 2015;37:1370–1378.CrossRefGoogle Scholar
  40. 40.
    Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth. 1992;68:613–618.CrossRefGoogle Scholar
  41. 41.
    AbdEl-Latif AAE, Sayed AA, Soliman AM, Fahmy SR. Exploration of the therapeutic potential effect of Sepia officinalis in animal model of sepsis induced by cecal ligation and puncture. Injury. 2016;47:2709–2717.CrossRefGoogle Scholar
  42. 42.
    Li CYC, Munitic I, Mittelstadt PR, Castro E, Ashwell JD. Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol. 2015;13:e10022696.Google Scholar
  43. 43.
    Hou TY, Huang DH, Zeng R, Ye ZM, Zhang Y. Accuracy of serum interleukin (IL)-6 in sepsis diagnosis: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8:15238–15245.Google Scholar
  44. 44.
    Montoya-Ruiz C, Jaimes FA, Rugeles MT, Lopez JA, Bedoya G, Velilla PA. Variants in LTA, TNF, IL1B and IL10 genes associated with the clinical course of sepsis. Immunol Res. 2016;64:1168–1178.CrossRefGoogle Scholar
  45. 45.
    Ozen BD, Uyanoglu M. Effect of carvacrol on IL-6/STAT3 pathway after partial hepatectomy in rat liver. Bratisl Med J Bratisl Lek Listy. 2018;119:593–601.CrossRefGoogle Scholar
  46. 46.
    Gil-Farina I, Di Scala M, Vanrell L, et al. IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression. PLoS ONE. 2013;8:e67748.CrossRefGoogle Scholar
  47. 47.
    Williams DL, Ha T, Li C, Kalbfleisch JH, Laffan JJ, Ferguson DA. Inhibiting early activation of tissue nuclear factor-kappa B and nuclear factor interleukin 6 with (1 → 3)-beta-d-glucan increases long-term survival in polymicrobial sepsis. Surgery. 1999;126:54–65.CrossRefGoogle Scholar
  48. 48.
    Hou YX, Liu SW, Wang LW, Wu SH. Physiopathology of multiple organ dysfunctions in severely monocrotophos-poisoned rabbits. Chem Biol Interact. 2017;278:9–14.CrossRefGoogle Scholar
  49. 49.
    Campana L, Lewis PJS, Pellicoro A, et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury. J Immunol. 2018;200:1169–1187.CrossRefGoogle Scholar
  50. 50.
    Lu H, Zhang L, Gu LL, Hou BY, Du GH. Oxymatrine induces liver injury through JNK signalling pathway mediated by TNF- in vivo. Basic Clin Pharmacol Toxicol. 2016;119:405–411.CrossRefGoogle Scholar
  51. 51.
    Chen W, Jadhav V, Tang J, Zhang JH. HIF-1 alpha inhibition ameliorates neonatal brain damage after hypoxic-ischemic injury. Acta Neurochir Suppl. 2008;102:395–399.CrossRefGoogle Scholar
  52. 52.
    Ma Z, Zhang Y, Li Q, Xu M, Bai J, Wu S. Resveratrol improves alcoholic fatty liver disease by downregulating HIF-1alpha expression and mitochondrial ROS production. PLoS ONE. 2017;12:e0183426.CrossRefGoogle Scholar
  53. 53.
    Kim Y, Kim BH, Lee H, et al. Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1alpha and NF-kappa B pathways. Free Radic Biol Med. 2011;51:1985–1995.CrossRefGoogle Scholar
  54. 54.
    Lau TY, Xiao J, Liong EC, et al. Hepatic response to chronic hypoxia in experimental rat model through HIF-1 alpha, activator protein-1 and NF-kappa B. Histol Histopathol. 2013;28:463–471.Google Scholar
  55. 55.
    Shneor D, Folberg R, Pe’er J, Honigman A, Frenkel S. Stable knockdown of CREB, HIF-1 and HIF-2 by replication-competent retroviruses abrogates the responses to hypoxia in hepatocellular carcinoma. Cancer Gene Ther. 2017;24:64–74.CrossRefGoogle Scholar
  56. 56.
    Zamara E, Galastri S, Aleffi S, et al. Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. J Hepatol. 2007;46:230–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lei Ding
    • 1
  • Yihang Gong
    • 1
  • Zhengfei Yang
    • 2
  • Baojia Zou
    • 1
  • Xialei Liu
    • 1
  • Baimeng Zhang
    • 1
  • Jian Li
    • 1
    Email author
  1. 1.Department of Hepatobiliary SurgeryThe 5th Affiliated Hospital of Sun Yat-Sen UniversityZhuhaiChina
  2. 2.Emergency DepartmentSun Yat-sen Memorial HospitalGuangzhouChina

Personalised recommendations