Advertisement

Digestive Diseases and Sciences

, Volume 64, Issue 2, pp 576–584 | Cite as

Prospective Assessment of Liver Function by an Enzymatic Liver Function Test to Estimate Short-Term Survival in Patients with Liver Cirrhosis

  • Maximilian JaraEmail author
  • Tomasz Dziodzio
  • Maciej Malinowski
  • Katja Lüttgert
  • Radoslav Nikolov
  • Paul Viktor Ritschl
  • Robert Öllinger
  • Johann Pratschke
  • Martin Stockmann
Original Article
  • 89 Downloads

Abstract

Background

MELD attempts to objectively predict the risk of mortality of patients with liver cirrhosis and is commonly used to prioritize organ allocation. Despite the usefulness of the MELD, updated metrics could further improve the accuracy of estimates of survival.

Aims

To assess and compare the prognostic ability of an enzymatic 13C-based liver function test (LiMAx) and distinct markers of liver function to predict 3-month mortality of patients with chronic liver failure.

Methods

We prospectively investigated liver function of 268 chronic liver failure patients without hepatocellular carcinoma. Primary study endpoint was liver-related death within 3 months of follow-up. Prognostic values were calculated using Cox proportional hazards and logistic regression analysis.

Results

The Cox proportional hazard model indicated that LiMAx (p < 0.001) and serum creatinine values (p < 0.001) were the significant parameters independently associated with the risk of liver failure-related death. Logistic regression analysis revealed LiMAx and serum creatinine to be independent predictors of mortality. Areas under the receiver-operating characteristic curves for MELD (0.86 [0.80–0.92]) and for a combined score of LiMAx and serum creatinine (0.83 [0.76–0.90]) were comparable.

Conclusions

Apart from serum creatinine levels, enzymatic liver function measured by LiMAx was found to be an independent predictor of short-term mortality risk in patients with liver cirrhosis. A risk score combining both determinants allows reliable prediction of short-term prognosis considering actual organ function.

Trial Registration Number (German Clinical Trials Register) # DRKS00000614.

Keywords

End-stage liver disease Liver function test LiMAx MELD Risk assessment Survival 

Abbreviations

AUROC

Area under the receiver-operating characteristics

CI

Confidence interval

CPS

Child–Pugh score

ESLD

End-stage liver disease

GI

Gastrointestinal

HCV

Hepatitis C virus

HR

Hazard ratio

ICC

Intraclass correlation coefficient

INR

International normalized ratio

IQR

Interquartile range

LiMAx

Maximum liver function capacity

LTx

Liver transplantation

MELD

Model for end-stage liver disease

MELDNa

Sodium MELD

NAFLD

Nonalcoholic fatty liver disease

RC

Regression coefficient

ROC

Receiver-operating characteristic

SBP

Spontaneous bacterial peritonitis

SE

Sensitivity

SP

Specificity

SD

Standard deviation

UKELD

United Kingdom Model for End-Stage Liver Disease

Notes

Acknowledgments

We gratefully thank Ms. Antonia Rothkäppel for the performance of LiMAx measurements. Further, we want to thank Alexander Krannich and Prof. Dr. rer. nat. habil. Klaus-Dieter Wernecke for performing statistical analyses. We also want to thank Mr. Jim Orr and Mr. Andrzej Juraszek for editing the final manuscript.

Funding

This study was part of the d-LIVER project and was funded in part by a Grant from the European Commission’s Seventh Framework Programme/European Research Council, grant agreement number 287596.

Compliance with ethical standards

Conflict of interest

Martin Stockmann is the inventor of the LiMAx test and has capital interest in Humedics, the company marketing the LiMAx test. Maximilian Jara and James Orr disclose having received research Grants in order of the d-LIVER European Commission’s Seventh Framework Programme/European Research Council, Grant Agreement Number 287596—www.d-liver.eu. Martin Stockmann was also steering committee member for the d-LIVER project. Remaining authors who have taken part in this study declared no conflict of interest with respect to this manuscript.

Supplementary material

10620_2018_5360_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. 1.
    Kamath PS, Wiesner RH, Malinchoc M, Kremers W, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–470.CrossRefGoogle Scholar
  2. 2.
    Wiesner R, Edwards E, Freeman R, Harper A, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124:91–96.CrossRefGoogle Scholar
  3. 3.
    Kim WR, Biggins SW, Kremers WK, Wiesner RH, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–1026.CrossRefGoogle Scholar
  4. 4.
    Sharma P, Schaubel DE, Sima CS, Merion RM, Lok AS. Re-weighting the model for end-stage liver disease score components. Gastroenterology. 2008;135:1575–1581.CrossRefGoogle Scholar
  5. 5.
    Schaubel DE, Guidinger MK, Biggins SW, Kalbfleisch JD, et al. Survival benefit-based deceased-donor liver allocation. Am J Transplant. 2009;9:970–981.CrossRefGoogle Scholar
  6. 6.
    Brown RS Jr, Lake JR. The survival impact of liver transplantation in the MELD era, and the future for organ allocation and distribution. Am J Transplant. 2005;5:203–204.CrossRefGoogle Scholar
  7. 7.
    Biggins SW, Bambha K. MELD-based liver allocation: who is underserved? Semin Liver Dis. 2006;26:211–220.CrossRefGoogle Scholar
  8. 8.
    Fernandez-Esparrach G, Sanchez-Fueyo A, Gines P, Uriz J, et al. A prognostic model for predicting survival in cirrhosis with ascites. J Hepatol. 2001;34:46–52.CrossRefGoogle Scholar
  9. 9.
    Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, et al. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology. 2005;41:32–39.CrossRefGoogle Scholar
  10. 10.
    Asrani SK, Kamath PS. Model for end-stage liver disease score and MELD exceptions: 15 years later. Hepatol Int. 2015;9:346–354.CrossRefGoogle Scholar
  11. 11.
    Tripodi A, Primignani M, Mannucci PM, Caldwell SH. Changing concepts of Cirrhotic Coagulopathy. Am J Gastroenterol. 2017;112:274–281.CrossRefGoogle Scholar
  12. 12.
    Tripodi A, D’Ambrosio R, Padovan L, Tosetti G, et al. Evaluation of coagulation during treatment with directly acting antivirals in patients with hepatitis C virus related cirrhosis. Liver Int. 2017;37:1295–1303.CrossRefGoogle Scholar
  13. 13.
    Werner KT, Sando S, Carey EJ, Vargas HE, et al. Portal vein thrombosis in patients with end stage liver disease awaiting liver transplantation: outcome of anticoagulation. Dig Dis Sci. 2013;58:1776–1780.  https://doi.org/10.1007/s10620-012-2548-y.CrossRefGoogle Scholar
  14. 14.
    Senzolo M, Sartori TM, Rossetto V, Burra P, et al. Prospective evaluation of anticoagulation and transjugular intrahepatic portosystemic shunt for the management of portal vein thrombosis in cirrhosis. Liver Int. 2012;32:919–927.CrossRefGoogle Scholar
  15. 15.
    Stockmann M, Lock JF, Riecke B, Heyne K, et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg. 2009;250:119–125.CrossRefGoogle Scholar
  16. 16.
    Stockmann M, Lock JF, Malinowski M, Niehues SM, et al. The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB. 2010;12:139–146.CrossRefGoogle Scholar
  17. 17.
    Lock JF, Kotobi AN, Malinowski M, Schulz A, et al. Predicting the prognosis in acute liver failure: results from a retrospective pilot study using the LiMAx test. Ann Hepatol. 2013;12:556–562.Google Scholar
  18. 18.
    Kaffarnik MF, Lock JF, Vetter H, Ahmadi N, et al. Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: a prospective study with the LiMAx test. Crit Care. 2013;17:R259.CrossRefGoogle Scholar
  19. 19.
    Malinowski M, Jara M, Luttgert K, Orr J, et al. Enzymatic liver function capacity correlates with disease severity of patients with liver cirrhosis: a study with the LiMAx test. Dig Dis Sci. 2014;59:2983–2991.  https://doi.org/10.1007/s10620-014-3250-z.CrossRefGoogle Scholar
  20. 20.
    Riordan SM, Williams R. Treatment of hepatic encephalopathy. N Engl J Med. 1997;337:473–479.CrossRefGoogle Scholar
  21. 21.
    Moore KP, Aithal GP. Guidelines on the management of ascites in cirrhosis. Gut. 2006;55:vi1–vi12.CrossRefGoogle Scholar
  22. 22.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–649.CrossRefGoogle Scholar
  23. 23.
    Asrani SK, Kim WR. Organ allocation for chronic liver disease: model for end-stage liver disease and beyond. Curr Opin Gastroenterol. 2010;26:209–213.CrossRefGoogle Scholar
  24. 24.
    Pfaffenbach B, Gotze O, Szymanski C, Hagemann D, Adamek RJ. The 13C-methacetin breath test for quantitative noninvasive liver function analysis with an isotope-specific nondispersive infrared spectrometer in liver cirrhosis. Dtsch Med Wochenschr. 1998;123:1467–1471.CrossRefGoogle Scholar
  25. 25.
    Jara M, Bednarsch J, Valle E, Lock JF, et al. Reliable assessment of liver function using LiMAx. J Surg Res. 2015;193:184–189.CrossRefGoogle Scholar
  26. 26.
    Malinchoc M, Kamath PS, Gordon FD, Peine CJ, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31:864–871.CrossRefGoogle Scholar
  27. 27.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.CrossRefGoogle Scholar
  28. 28.
    Harrell F. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer; 2001.CrossRefGoogle Scholar
  29. 29.
    Merkel C, Gatta A, Zoli M, Bolognesi M, et al. Prognostic value of galactose elimination capacity, aminopyrine breath test, and ICG clearance in patients with cirrhosis. Comparison with the Pugh score. Dig Dis Sci. 1991;36:1197–1203.  https://doi.org/10.1007/BF01307508.CrossRefGoogle Scholar
  30. 30.
    Salerno F, Borroni G, Moser P, Sangiovanni A, et al. Prognostic value of the galactose test in predicting survival of patients with cirrhosis evaluated for liver transplantation. A prospective multicenter Italian study. AISF Group for the Study of Liver Transplantation. Associazione Italiana per lo Studio del Fegato. J Hepatol. 1996;25:474–480.CrossRefGoogle Scholar
  31. 31.
    Botta F, Giannini E, Romagnoli P, Fasoli A, et al. MELD scoring system is useful for predicting prognosis in patients with liver cirrhosis and is correlated with residual liver function: a European study. Gut. 2003;52:134–139.CrossRefGoogle Scholar
  32. 32.
    Stravitz RT, Ilan Y. Potential use of metabolic breath tests to assess liver disease and prognosis: has the time arrived for routine use in the clinic? Liver Int. 2017;37:328–336.CrossRefGoogle Scholar
  33. 33.
    Stockmann M, Lock JF, Malinowski M, Seehofer D, et al. How to define initial poor graft function after liver transplantation? A new functional definition by the LiMAx test. Transplant Int. 2010;23:1023–1032.CrossRefGoogle Scholar
  34. 34.
    Lock JF, Schwabauer E, Martus P, Videv N, et al. Early diagnosis of primary nonfunction and indication for reoperation after liver transplantation. Liver Transplant. 2010;16:172–180.CrossRefGoogle Scholar
  35. 35.
    Alizai PH, Wendl J, Roeth AA, Klink CD, et al. Functional liver recovery after bariatric surgery—a prospective Cohort Study with the LiMAx Test. Obes Surg. 2015;25:2047–2053.CrossRefGoogle Scholar
  36. 36.
    Adamek RJ, Goetze O, Boedeker C, Pfaffenbach B, et al. 13C-methacetin breath test: isotope-selective nondispersive infrared spectrometry in comparison to isotope ratio mass spectrometry in volunteers and patients with liver cirrhosis. Z Gastroenterol. 1999;37:1139–1143.Google Scholar
  37. 37.
    Klatt S, Taut C, Mayer D, Adler G, Beckh K. Evaluation of the 13C-methacetin breath test for quantitative liver function testing. Z Gastroenterol. 1997;35:609–614.Google Scholar
  38. 38.
    Ramachandran A, Balasubramanian KA. Intestinal dysfunction in liver cirrhosis: Its role in spontaneous bacterial peritonitis. J Gastroenterol Hepatol. 2001;16:607–612.CrossRefGoogle Scholar
  39. 39.
    Salerno F, Borroni G, Moser P, Badalamenti S, et al. Survival and prognostic factors of cirrhotic patients with ascites: a study of 134 outpatients. Am J Gastroenterol. 1993;88:514–519.Google Scholar
  40. 40.
    Bustamante J, Rimola A, Ventura PJ, Navasa M, et al. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol. 1999;30:890–895.CrossRefGoogle Scholar
  41. 41.
    Llach J, Gines P, Arroyo V, Rimola A, et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology. 1988;94:482–487.CrossRefGoogle Scholar
  42. 42.
    Wong VW, Chim AM, Wong GL, Sung JJ, Chan HL. Performance of the new MELD-Na score in predicting 3-month and 1-year mortality in Chinese patients with chronic hepatitis B. Liver Transplant. 2007;13:1228–1235.CrossRefGoogle Scholar
  43. 43.
    Heuman DM, Abou-Assi SG, Habib A, Williams LM, et al. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology. 2004;40:802–810.CrossRefGoogle Scholar
  44. 44.
    Koller H, Rosenkranz A. Hyponatremia to be an excellent predictor of outcome in patients with advanced cirrhosis. Liver Transplant 2005;11(8):1001; author reply 1001–1002.Google Scholar
  45. 45.
    Biggins SW, Kim WR, Terrault NA, Saab S, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology. 2006;130:1652–1660.CrossRefGoogle Scholar
  46. 46.
    Fisher RA, Heuman DM, Harper AM, Behnke MK, et al. Region 11 MELD Na exception prospective study. Ann Hepatol. 2012;11:62–67.Google Scholar
  47. 47.
    Everson GT. MELD: the answer or just more questions? Gastroenterology. 2003;124:251–254.CrossRefGoogle Scholar
  48. 48.
    Englesbe MJ, Schaubel DE, Cai S, Guidinger MK, Merion RM. Portal vein thrombosis and liver transplant survival benefit. Liver Transplant. 2010;16:999–1005.CrossRefGoogle Scholar
  49. 49.
    Stravitz RT, Reuben A, Mizrahi M, Lalazar G, et al. Use of the methacetin breath test to classify the risk of cirrhotic complications and mortality in patients evaluated/listed for liver transplantation. J Hepatol. 2015;63:1345–1351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maximilian Jara
    • 1
    Email author
  • Tomasz Dziodzio
    • 1
  • Maciej Malinowski
    • 1
    • 2
  • Katja Lüttgert
    • 1
  • Radoslav Nikolov
    • 1
  • Paul Viktor Ritschl
    • 1
    • 3
  • Robert Öllinger
    • 1
  • Johann Pratschke
    • 1
  • Martin Stockmann
    • 1
    • 4
  1. 1.Department of Surgery, Campus Charité Mitte - Campus Virchow-KlinikumCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of General, Visceral, Vascular and Pediatric SurgeryUniversity of The SaarlandHomburgGermany
  3. 3.BIH Charité Clinician Scientist ProgramBerlin Institute of Health (BIH)BerlinGermany
  4. 4.Department of General, Visceral and Vascular SurgeryEvangelisches Krankenhaus Paul Gerhardt StiftLutherstadt WittenbergGermany

Personalised recommendations