Digestive Diseases and Sciences

, Volume 63, Issue 10, pp 2582–2592 | Cite as

Expression of α-Defensins, CD20+ B-lymphocytes, and Intraepithelial CD3+ T-lymphocytes in the Intestinal Mucosa of Patients with Liver Cirrhosis: Emerging Mediators of Intestinal Barrier Function

  • Georgios I. Tsiaoussis
  • Eleni C. Papaioannou
  • Eleni P. Kourea
  • Stelios F. Assimakopoulos
  • Georgios I. Theocharis
  • Michalis Petropoulos
  • Vasileios I. Theopistos
  • Georgia G. Diamantopoulou
  • Zoi Lygerou
  • Iris Spiliopoulou
  • Konstantinos C. Thomopoulos
Original Article



The present study investigates the role of innate and adaptive immune system of intestinal mucosal barrier function in cirrhosis.


Forty patients with decompensated (n = 40, group A), 27 with compensated cirrhosis (n = 27, group B), and 27 controls (n = 27, group C) were subjected to duodenal biopsy. Expression of α-defensins 5 and 6 at the intestinal crypts was evaluated by immunohistochemistry and immunofluorescence. Serum endotoxin, intestinal T-intraepithelial, and lamina propria B-lymphocytes were quantified.


Cirrhotic patients presented higher endotoxin concentrations (p < 0.0001) and diminished HD5 and HD6 expression compared to healthy controls (p = 0.000287, p = 0.000314, respectively). The diminished HD5 and HD6 expressions were also apparent among the decompensated patients compared to compensated group (p = 0.025, p = 0.041, respectively). HD5 and HD6 expressions were correlated with endotoxin levels (r = -0.790, p < 0.0001, r = − 0.777, p < 0.0001, respectively). Although intraepithelial T-lymphocytes were decreased in group A compared to group C (p = 0.002), no notable alterations between groups B and C were observed. The B-lymphocytic infiltrate did not differ among the investigated groups.


These data demonstrate that decreased expression of antimicrobial peptides may be considered as a potential pathophysiological mechanism of intestinal barrier dysfunction in liver cirrhosis, while remodeling of gut-associated lymphoid tissue as an acquired immune response to bio-pathogens remains an open field to illuminate.


Bacterial translocation Mucosal defense Antimicrobial peptides Gut-associated lymphoid tissue Endotoxin Paneth cells 



We thank Roumelioti Maria for the excellent technical assistance and the Advanced Light Microscopy Facility, University of Patras, for help with microscopy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799–809.CrossRefGoogle Scholar
  2. 2.
    Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest. 2012;42:439–446.CrossRefGoogle Scholar
  3. 3.
    Johansson ME, Ambort D, Pelaseyed T, et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011;68:3635–3641.CrossRefGoogle Scholar
  4. 4.
    Ouellette AJ, Selsted ME. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. 1996;10:1280–1289.CrossRefGoogle Scholar
  5. 5.
    Dinsdale D. Ultrastructural localization of zinc and calcium within the granules of rat Paneth cells. J Histochem Cytochem. 1984;32:139–145.CrossRefGoogle Scholar
  6. 6.
    Podany AB, Wright J, Lamendella R, Soybel DI, Kelleher SL. WriZnT2-mediated zinc import into Paneth cell granules is necessary for coordinated secretion and Paneth cell function in mice. Cell Mol Gastroenterol Hepatol.. 2016;2:369–383.CrossRefGoogle Scholar
  7. 7.
    Porter EM, Liu L, Oren A, Anton PA, Ganz T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun. 1997;65:2389–2395.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bevins CL. The Paneth cell and the innate immune response. Curr Opin Gastroenterol.. 2004;20:572–580.CrossRefGoogle Scholar
  9. 9.
    Wehkamp J, Chu H, Shen B, et al. Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett. 2006;580:5344–5350.CrossRefGoogle Scholar
  10. 10.
    Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313:1126–1130.CrossRefGoogle Scholar
  11. 11.
    Peeters T, Vantrappen G. The Paneth cell: a source of intestinal lysozyme. Gut. 1975;16:553–558.CrossRefGoogle Scholar
  12. 12.
    Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–472.CrossRefGoogle Scholar
  13. 13.
    Bevins CL, Martin-Porter E, Ganz T. Defensins and innate host defence of the gastrointestinal tract. Gut. 1999;45:911–915.CrossRefGoogle Scholar
  14. 14.
    Leitch GJ, Ceballos C. A role for antimicrobial peptides in intestinal microsporidiosis. Parasitology. 2009;136:175–181.CrossRefGoogle Scholar
  15. 15.
    Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. Critical determinants of human alpha-defensin 5 activity against non-enveloped viruses. J Biol Chem. 2012;287:24554–24562.CrossRefGoogle Scholar
  16. 16.
    Johnson CA, Rachakonda G, Kleshchenko YY, et al. Cellular response to Trypanosoma cruzi infection induces secretion of defensin alpha-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun. 2013;81:4139–4148.CrossRefGoogle Scholar
  17. 17.
    Preet S, Bharati S, Shukla G, Koul A, Rishi P. Evaluation of amoebicidal potential of Paneth cell cryptdin-2 against Entamoeba histolytica. PLoS Negl Trop Dis. 2011;5:e1386.CrossRefGoogle Scholar
  18. 18.
    Mathew B, Nagaraj R. Variations in the interaction of human defensins with Escherichia coli: possible implications in bacterial killing. PLoS ONE. 2017;12:e0175858.CrossRefGoogle Scholar
  19. 19.
    Chu H, Pazgier M, Jung G, et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337:477–481.CrossRefGoogle Scholar
  20. 20.
    de Leeuw E, Burks SR, Li X, Kao JP, Lu W. Structure-dependent functional properties of human defensin 5. FEBS Lett. 2007;581:515–520.CrossRefGoogle Scholar
  21. 21.
    Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol. 2014;61:1385–1396.CrossRefGoogle Scholar
  22. 22.
    Guy-Grand D, Malassis-Seris M, Briottet C, Vassalli P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J Exp Med. 1991;173:1549–1552.CrossRefGoogle Scholar
  23. 23.
    Taguchi T, Aicher WK, Fujihashi K, et al. Novel function for intestinal intraepithelial lymphocytes. Murine CD3+, gamma/delta TCR+ T cells produce IFN-gamma and IL-5. J Immunol.. 1991;147:3736–3744.PubMedGoogle Scholar
  24. 24.
    Yamamoto M, Fujihashi K, Amano M, McGhee JR, Beagley KW, Kiyono H. Cytokine synthesis and apoptosis by intestinal intraepithelial lymphocytes: signaling of high density alpha beta T cell receptor+ and gamma delta T cell receptor+ T cells via T cell receptor-CD3 complex results in interferon-gamma and interleukin-5 production, while low density T cells undergo DNA fragmentation. Eur J Immunol. 1994;24:1301–1306.CrossRefGoogle Scholar
  25. 25.
    Inagaki-Ohara K, Dewi FN, Hisaeda H, et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun. 2006;74:5292–5301.CrossRefGoogle Scholar
  26. 26.
    Lendrum AC. The phloxine-tartrazine method as general histological stain and for the demonstration of inclusion bodies. J Pathol Bacteriol.. 1947;1947:399–404.CrossRefGoogle Scholar
  27. 27.
    Thalheimer U, De Iorio F, Capra F, et al. Altered intestinal function precedes the appearance of bacterial DNA in serum and ascites in patients with cirrhosis: a pilot study. Eur J Gastroenterol Hepatol.. 2010;22:1228–1234.CrossRefGoogle Scholar
  28. 28.
    Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: current concepts in pathophysiology and clinical implications. World J Hepatol.. 2015;7:2058–2068.CrossRefGoogle Scholar
  29. 29.
    Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology. 2012;55:1154–1163.CrossRefGoogle Scholar
  30. 30.
    Kaltsa G, Bamias G, Siakavellas SI, et al. Systemic levels of human β-defensin 1 are elevated in patients with cirrhosis. Ann Gastroenterol.. 2016;29:63–70.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Merli M, Lucidi C, Pentassuglio I, et al. Increased risk of cognitive impairment in cirrhotic patients with bacterial infections. J Hepatol. 2013;59:243–250.CrossRefGoogle Scholar
  32. 32.
    Goulis J, Patch D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. Lancet. 1999;353:139–142.CrossRefGoogle Scholar
  33. 33.
    El-Naggar MM, Khalil ELSA, El-Daker MA, Salama MF. Bacterial DNA and its consequences in patients with cirrhosis and culture-negative, non-neutrocytic ascites. J Med Microbiol.. 2008;57:1533–1538.CrossRefGoogle Scholar
  34. 34.
    Zhou QQ, Yang DZ, Luo YJ, Li SZ, Liu FY, Wang GS. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroenterol. 2011;17:1584–1593.CrossRefGoogle Scholar
  35. 35.
    Casafont F, Sánchez E, Martín L, Agüero J, Romero FP. Influence of malnutrition on the prevalence of bacterial translocation and spontaneous bacterial peritonitis in experimental cirrhosis in rats. Hepatology. 1997;25:1334–1337.CrossRefGoogle Scholar
  36. 36.
    Froy O, Levkovich G, Chapnik N. Immunonutrition enhances the expression and secretion of mouse intestinal defensins. Gut. 2006;55:900–901.CrossRefGoogle Scholar
  37. 37.
    Hodin CM, Lenaerts K, Grootjans J, et al. Starvation compromises Paneth cells. Am J Pathol. 2011;179:2885–2893.CrossRefGoogle Scholar
  38. 38.
    Kelly P, Feakins R, Domizio P, et al. Paneth cell granule depletion in the human small intestine under infective and nutritional stress. Clin Exp Immunol. 2004;135:303–309.CrossRefGoogle Scholar
  39. 39.
    Mangray S, Zweit J, Puri P. Zinc deficiency in cirrhosis: micronutrient for thought? Dig Dis Sci. 2015;60:2868–2870.CrossRefGoogle Scholar
  40. 40.
    Tremblay S, Romain G, Roux M, et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection. Infect Immun.. 2017;85:e00942-16.CrossRefGoogle Scholar
  41. 41.
    Inagaki-Ohara K, Chinen T, Matsuzaki G, et al. Mucosal T cells bearing TCR gamma delta play a protective role in intestinal inflammation. J Immunol.. 2004;173:1390–1398.CrossRefGoogle Scholar
  42. 42.
    Kawakami M, Switzer BR, Herzog SR, Meyer AA. Immune suppression after acute ethanol ingestion and thermal injury. J Surg Res. 1991;51:210–215.CrossRefGoogle Scholar
  43. 43.
    Choudhry MA, Fazal N, Goto M, Gamelli RL, Sayeed MM. Gut-associated lymphoid T cell suppression enhances bacterial translocation in alcohol and burn injury. Am J Physiol Gastrointest Liver Physiol. 2002;282:G937–G947.CrossRefGoogle Scholar
  44. 44.
    Wen JB, Zhu FQ, Chen WG, et al. Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats. PLoS ONE. 2014;9:e106082.CrossRefGoogle Scholar
  45. 45.
    Maranduba CM, De Castro SB, de Souza GT, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res.. 2015;2015:931574.CrossRefGoogle Scholar
  46. 46.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273.CrossRefGoogle Scholar
  47. 47.
    Alexopoulou A, Agiasotelli D, Vasilieva LE, Dourakis SP. Bacterial translocation markers in liver cirrhosis. Ann Gastroenterol.. 2017;30:486–497.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Koutsounas I, Kaltsa G, Siakavellas SI, Bamias G. Markers of bacterial translocation in end-stage liver disease. World J Hepatol.. 2015;7:2264–2273.CrossRefGoogle Scholar
  49. 49.
    Grube BJ, Cochane CG, Ye RD, et al. Lipopolysaccharide binding protein expression in primary human hepatocytes and HepG2 hepatoma cells. J Biol Chem. 1994;269:8477–8482.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Georgios I. Tsiaoussis
    • 1
  • Eleni C. Papaioannou
    • 2
  • Eleni P. Kourea
    • 2
  • Stelios F. Assimakopoulos
    • 3
  • Georgios I. Theocharis
    • 1
  • Michalis Petropoulos
    • 5
  • Vasileios I. Theopistos
    • 1
  • Georgia G. Diamantopoulou
    • 1
  • Zoi Lygerou
    • 5
  • Iris Spiliopoulou
    • 4
  • Konstantinos C. Thomopoulos
    • 1
  1. 1.Department of GastroenterologyUniversity Hospital of PatrasPatrasGreece
  2. 2.Department of Pathology, School of MedicineUniversity of PatrasPatrasGreece
  3. 3.Department of Internal MedicineUniversity Hospital of PatrasPatrasGreece
  4. 4.Department of Microbiology, School of MedicineUniversity of PatrasPatrasGreece
  5. 5.Department of General Biology, School of MedicineUniversity of PatrasPatrasGreece

Personalised recommendations