Skip to main content

Advertisement

Log in

Osteopontin Ablation Attenuates Progression of Colitis in TNBS Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

OPN has been implicated in the inflammatory response to Crohn’s disease. We hypothesized that OPN deficiency protects against different stages of TNBS-induced colitis in a modified model that mimics Crohn’s disease.

Material and Methods

OPN-deficient and wildtype mice were treated intracolonically with TNBS and euthanized during acute, sub-acute and chronic colitis.

Results

TNBS-treated wildtype mice developed severe colitis, but OPN-deficient mice were significantly protected. Wildtype mice showed significant infiltration of inflammatory cells including macrophages, and colonic transmural thickening that progressed to strictures, increased matrix collagen deposits (X2 fold), and granuloma formation. These pathological findings were partially attenuated by OPN deficiency. The inflammatory marker, serum amyloid A (SAA), markedly increased in sub-acute stages regardless of OPN status. Conversely, OPN deficiency significantly reduced concentration of SAA in the acute and chronic stages. Secretory OPN was upregulated particularly in acute stage in wildtypes (P < 0.001) and as expected not present in OPN-deficient animals. Flow cytometry analysis of splenic macrophages revealed significant increases in scavenger receptors, macrosialin and F4/80 markers’ expression in wildtypes.

Conclusions

Our data support the role of OPN in induction of inflammation and establishment of chronic colitis. Therefore, OPN may represent a target for therapeutic intervention in Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DSS:

Dextran sodium sulfate

FITC:

Fluorescein isothiocyanate

IBD:

Inflammatory bowel disease

OPN:

Osteopontin

PE:

Phycoerythrin, labeled

SAA:

Serum amyloid A

SR-A:

Scavenger receptor class A

TNBS:

Trinitrobenzene sulfonic acid

WT:

Wildtype

References

  1. Caillier S, Barcellos LF, Baranzini SE, et al. Multiple sclerosis genetics group. Osteopontin polymorphisms and disease course in multiple sclerosis. Genes Immun. 2003;4:312–315.

    Article  PubMed  CAS  Google Scholar 

  2. Sato T, Nakai T, Tamura N, et al. Osteopontin/Eta-1 upregulated in Crohn’s disease regulates the Th1 immune response. Gut. 2005;54:1254–1262.

    Article  PubMed  CAS  Google Scholar 

  3. Mishima R, Takeshima F, Sawai T, et al. High plasma osteopontin levels in patients with inflammatory bowel disease. J Clin Gastroenterol. 2007;41:123–125.

    Article  Google Scholar 

  4. Oz HS, Ebersole JL. Application of prodrugs to inflammatory diseases of the gut. Molecules. 2008;13:452–474 (review).

    Google Scholar 

  5. Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res. 2007;149:173–186.

    Article  PubMed  CAS  Google Scholar 

  6. Hume DA, Allan W, Hogan PG, Doe WF. Immunohistochemical characterization of macrophages in human liver and gastrointestinal tract: expression of CD4, HLA-DR, OKM1, and the mature macrophage marker 25F9 in normal and diseased tissue. J Leuko Biol. 1987;42:474–484.

    PubMed  CAS  Google Scholar 

  7. Oshitani N, Campbell A, Kitano A, Kobayashi K, Jewell DP. In situ comparison of phenotypical and functional activity of infiltrating cells in ulcerative colitis mucosa. J Pathol. 1996;178:95–99.

    Article  PubMed  CAS  Google Scholar 

  8. Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut. 1994;35:669–674.

    Article  PubMed  CAS  Google Scholar 

  9. Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastro Hepatol. 1995;10:387–395.

    Article  CAS  Google Scholar 

  10. Patarca R, Wei FY, Singh P, Morasso MI, Cantor H. Dysregulated expression of the T cell cytokine Eta-1 in CD4–8-lymphocytes during the development of murine autoimmune disease. J Exp Med. 1990;172:1177–1183.

    Article  PubMed  CAS  Google Scholar 

  11. Lampe MA, Patarca R, Iregui MV, Cantor H. Polyclonal B cell activation by the Eta-1 cytokine and the development of systemic autoimmune disease. J Immunol. 1991;147:2902–2906.

    PubMed  CAS  Google Scholar 

  12. Yamamoto N, Sakai F, Kon S, et al. Essential role of the cryptic epitope SLAYGLR within osteopontin in a murine model of rheumatoid arthritis. J Clinic Invest. 2003;112:181–188.

    CAS  Google Scholar 

  13. Masuda H, Takahashi Y, Asai S, Hemmi A, Takayama T. Osteopontin expression in ulcerative colitis is distinctly different from that in Crohn’s disease and diverticulitis. J Gastro. 2005;40:409–413.

    Article  CAS  Google Scholar 

  14. Oz HS, Chen T, Nagasawa H. Comparative efficacies of two cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res. 2007;150:122–129.

    Article  PubMed  CAS  Google Scholar 

  15. Zhong J, Eckhardt ER, Oz HS, Bruemmer D, de Villiers W. Osteopontin deficiency protects mice from DSS-induced colitis. Inflam Bowel Dis. 2006;12:790–796.

    Article  Google Scholar 

  16. Oz HS, Chen T, Ebersole JL. A model for chronic mucosal inflammation in IBD and periodontitis. Dig Dis Sci. 2010;55:2194–2202.

    Article  PubMed  Google Scholar 

  17. Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA. 1990;87:4473–4475.

    Article  PubMed  CAS  Google Scholar 

  18. Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19:615–622.

    Article  PubMed  CAS  Google Scholar 

  19. Ashkar S, Weber GF, Panoutsakopoulou V, et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287:860–864.

    Article  PubMed  CAS  Google Scholar 

  20. Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol. 1998;152:353–358.

    PubMed  CAS  Google Scholar 

  21. Heilmann K, Hoffmann U, Witte E, et al. Osteopontin as two-sided mediator of intestinal inflammation. J Cell Mol Med. 2009;13:1162–1174.

    Article  PubMed  CAS  Google Scholar 

  22. Da Silva AP, Pollett A, Rittling SR, Denhardt DT, Sodek J, Zohar R. Exacerbated tissue destruction in DSS-induced acute colitis of OPN-null mice is associated with downregulation of TNF-alpha expression and non-programmed cell death. J Cell Physiol. 2006;208:629–639.

    Article  PubMed  Google Scholar 

  23. Grassl GA, Valdez Y, Bergstrom KS, Vallance BA, Finlay BB. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Gastroenterology. 2008;134:768–780.

    Article  PubMed  CAS  Google Scholar 

  24. Ardite E, Sans M, Panes J, Romero F, Pique JM, Fernandez-Checa J. Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab Invest. 2000;80:735–744.

    Google Scholar 

  25. Oz HS, Ebersole JL. A novel murine model for chronic inflammatory alveolar bone loss. J Periodontal Resh. 2010;45:94–99.

    Article  CAS  Google Scholar 

  26. Grisham MB, Volkmer C, Tso P, Yamada T. Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology. 1991;101:540–547.

    PubMed  CAS  Google Scholar 

  27. Rath HC, Schultz M, Freitag R, et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun. 2001;69:2277–2285.

    Article  PubMed  CAS  Google Scholar 

  28. Hazelgrove KB, Flynn RS, Qiao lY, Grider JR, Kuemmerle JF. Endogenous IGF-I and αvβ3 integrin ligands regulate increased smooth muscle growth in TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1230–G1237.

Download references

Acknowledgments

This research was partially supported by the National Institutes of Health grants: NCCAM-AT1490 and NIDCR-DE19177 (HO). This study was presented in part as a poster of distinction at the Digestive Disease Week 2008 in San Diego, CA (Gastroenterology Suppl 2008:134,A-525,T1296).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helieh S. Oz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oz, H.S., Zhong, J. & de Villiers, W.J.S. Osteopontin Ablation Attenuates Progression of Colitis in TNBS Model. Dig Dis Sci 57, 1554–1561 (2012). https://doi.org/10.1007/s10620-011-2009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-2009-z

Keywords

Navigation