Digestive Diseases and Sciences

, Volume 49, Issue 11–12, pp 1745–1751 | Cite as

Oral S(+)-Ketamine Does Not Change Visceral Perception in Health

  • Sjoerd D. Kuiken
  • Sake J. Th. Van Den Berg
  • Guido N. J. Tytgat
  • Guy E. E. Boeckxstaens


Application of N-methyl-d-aspartate (NMDA)-receptor antagonists may hold promise for the treatment of visceral pain. In this study we evaluated the effect of oral S(+)-ketamine (sKET), a noncompetitive NMDA-receptor antagonist, on visceral sensitivity in healthy volunteers. Eight healthy volunteers (five male, three female) underwent a gastric barostat study following oral administration of placebo, 25 mg sKET, and 50 mg sKET. Studies were performed in a double-blind randomized crossover fashion. Sensations evoked by stepwise isobaric distension (2 mm Hg/2 min) were scored on a 100-mm visual analogue scale. In addition, fasting and postprandial fundic volume were measured at a fixed pressure level (MDP + 2 mm Hg). During gastric distension, sKET did not alter sensation scores for bloating, nausea, satiation, and pain compared to placebo. sKET had also no effects on the thresholds for pain/discomfort, fundic wall compliance, fundic tone, or meal-induced fundic relaxation. sKET does not reduce visceral perception or gastric motility in healthy volunteers. The role of sKET in conditions characterized by visceral hypersensitivity needs to be studied further.

ketamine NMDA barostat human FGID hypersensitivity visceral perception sensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA: Functional bowel disorders and functional abdominal pain. Gut 45 (Suppl 2):II43–II47, 1999PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mayer EA, Gebhart GF: Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107:271–293, 1994CrossRefGoogle Scholar
  3. 3.
    Cervero F, Laird JM: Visceral pain. Lancet 353:2145–2148, 1999CrossRefPubMedGoogle Scholar
  4. 4.
    Kirkup AJ, Brunsden AM, Grundy D: Receptors and transmission in the brain-gut axis: Potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol 280:G787–G794, 2001Google Scholar
  5. 5.
    Bueno L, Fioramonti J, Garcia-Villar R: Pathobiology of visceral pain: molecular mechanisms and therapeutic implications. III. Visceral afferent pathways: A source of new therapeutic targets for abdominal pain. Am J Physiol 278:G670–G676, 2000Google Scholar
  6. 6.
    Haley JE, Sullivan AF, Dickenson AH: Evidence for spinal N-methyl-D-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518:218–226, 1990CrossRefPubMedGoogle Scholar
  7. 7.
    Woolf CJ, Thompson SW: The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; Implications for the treatment of post-injury pain hypersensitivity states. Pain 44:293–299, 1991CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hewitt DJ: The use of NMDA-receptor antagonists in the treatment of chronic pain. Clin J Pain 16:S73–S79, 2000CrossRefPubMedGoogle Scholar
  9. 9.
    Coutinho SV, Meller ST, Gebhart GF: Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 736:7–15, 1996CrossRefPubMedGoogle Scholar
  10. 10.
    Ide Y, Maehara Y, Tsukahara S, Kitahata LM, Collins JG: The effects of an intrathecal NMDA antagonist (AP5) on the behavioral changes induced by colorectal inflammation with turpentine in rats. Life Sci 60:1359–1363, 1997CrossRefPubMedGoogle Scholar
  11. 11.
    Ji Y, Traub RJ: Spinal NMDA receptors contribute to neuronal processing of acute noxious and nonnoxious colorectal stimulation in the rat. J Neurophysiol 86:1783–1791, 2001CrossRefPubMedGoogle Scholar
  12. 12.
    McRoberts JA, Coutinho SV, Marvizon JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA: Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120:1737–1748, 2001CrossRefPubMedGoogle Scholar
  13. 13.
    Oliver T, Laird JM: Differential effects of N-methyl-D-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain 79:67–73, 1999CrossRefGoogle Scholar
  14. 14.
    Kuiken SD, Lei A, Tytgat GN, Holman R, Boeckxstaens GE: Effect of the low-affinity, noncompetitive N-methyl-d-aspartate receptor antagonist dextromethorphan on visceral perception in healthy volunteers. Aliment Pharmacol Ther 16:1955–1962, 2002CrossRefPubMedGoogle Scholar
  15. 15.
    Tortella FC, Pellicano M, Bowery NG: Dextromethorphan and neuromodulation: Old drug coughs up new activities. Trends Pharmacol Sci 10:501–507, 1989CrossRefPubMedGoogle Scholar
  16. 16.
    Liu HT, Hollmann MW, Liu WH, Hoenemann CW, Durieux ME: Modulation of NMDA receptor function by ketamine and magnesium: Part I. Anesth Analg 92:1173–1181, 2001CrossRefPubMedGoogle Scholar
  17. 17.
    Loftis JM, Janowsky A: The N-methyl-D-aspartate receptor subunit NR2B: Localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97:55–85, 2003CrossRefPubMedGoogle Scholar
  18. 18.
    Pfenninger EG, Durieux ME, Himmelseher S: Cognitive impairment after small-dose ketamine isomers in comparison to equianalgesic racemic ketamine in human volunteers. Anesthesiology 96:357–366, 2002CrossRefPubMedGoogle Scholar
  19. 19.
    Grant IS, Nimmo WS, Clements JA: Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br J Anaesth 53:805–810, 1981CrossRefPubMedGoogle Scholar
  20. 20.
    Johnstone M: The prevention of ketamine dreams. Anaesth Intens Care 1:70–74, 1972CrossRefGoogle Scholar
  21. 21.
    Azpiroz F, Malagelada J-R: Physiological variations in canine gastric tone measured by an electronic barostat. Am J Physiol 247:229–237, 1985Google Scholar
  22. 22.
    Zhou S, Bonasera L, Carlton SM: Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport 7:895–900, 1996CrossRefPubMedGoogle Scholar
  23. 23.
    Wei F, Wang GD, Kerchner GA, Kim SJ, Xu HM, Chen ZF, Zhuo M: Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4:164–169, 2001CrossRefPubMedGoogle Scholar
  24. 24.
    Traub RJ, Zhai Q, Ji Y, Kovalenko M: NMDA receptor antagonists attenuate noxious and nonnoxious colorectal distention-induced Fos expression in the spinal cord and the visceromotor reflex. Neuroscience 113:205–211, 2002CrossRefPubMedGoogle Scholar
  25. 25.
    Zheng H, Kelly L, Patterson LM, Berthoud HR: Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals. Am J Physiol 277:R1104–R1111, 1999PubMedGoogle Scholar
  26. 26.
    Thomson AM, West DC, Lodge D: An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: A site of action of ketamine? Nature 313:479–481, 1985CrossRefPubMedGoogle Scholar
  27. 27.
    White PF, Schuttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ: Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth 57:197–203, 1985CrossRefPubMedGoogle Scholar
  28. 28.
    Fisher K, Coderre TJ, Hagen NA: Targeting the N-methyl-D-aspartate receptor for chronic pain management. Preclinical animal studies, recent clinical experience and future research directions. J Pain Symptom Manage 20:358–373, 2000CrossRefPubMedGoogle Scholar
  29. 29.
    Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM: Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol 333:99–104, 1997CrossRefPubMedGoogle Scholar
  30. 30.
    Olivar T, Laird JM: Differential effects of N-methyl-D-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain 79:67–73, 1999CrossRefPubMedGoogle Scholar
  31. 31.
    Castroman PJ, Ness TJ: Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder. Anesthesiology 96:1410–1419, 2002CrossRefPubMedGoogle Scholar
  32. 32.
    Craviso GL, Musacchio JM: High-affinity dextromethorphan binding sites in guinea pig brain. I. Initial characterization. Mol Pharmacol 23:619–628, 1983PubMedGoogle Scholar
  33. 33.
    Zhang TY, Jahng JW, Kim DG: Dextromethorphan increases tyrosine hydroxylase mRNA in the mesencephalon of adolescent rats. Neurosci Lett 309:85–88, 2001CrossRefPubMedGoogle Scholar
  34. 34.
    Sivarao DV, Krowicki ZK, Abrahams TP, Hornby PJ: Vagally-regulated gastric motor activity: Evidence for kainate and NMDA receptor mediation. Eur J Pharmacol 368:173–182, 1999CrossRefPubMedGoogle Scholar
  35. 35.
    Krowicki ZK, Sivarao DV, Abrahams TP, Hornby PJ: Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation. J Auton Nerv Syst 77:83–89, 1999CrossRefPubMedGoogle Scholar
  36. 36.
    Jankovic SM, Milovanovic D, Matovic M, Iric-Cupic V: The effects of excitatory amino acids on isolated gut segments of the rat. Pharmacol Res 39:143–148, 1999CrossRefPubMedGoogle Scholar
  37. 37.
    Willert RP, Hobson A, Woolf C, Thompson D, Aziz Q: The induction of central sensitization in a human model of visceral pain hypersensitivity is prevented by ketamine, an NMDA receptor antagonist. Gastroenterology 124:A368, 2003 (abstr)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Sjoerd D. Kuiken
    • 1
  • Sake J. Th. Van Den Berg
    • 1
  • Guido N. J. Tytgat
    • 1
  • Guy E. E. Boeckxstaens
    • 1
  1. 1.Department of Gastroenterology and HepatologyAcademic Medical Centerthe Netherlands

Personalised recommendations