Cluster-based trajectory segmentation with local noise

  • Maria Luisa Damiani
  • Fatima Hachem
  • Hamza Issa
  • Nathan Ranc
  • Paul Moorcroft
  • Francesca Cagnacci
Article

Abstract

We present a framework for the partitioning of a spatial trajectory in a sequence of segments based on spatial density and temporal criteria. The result is a set of temporally separated clusters interleaved by sub-sequences of unclustered points. A major novelty is the proposal of an outlier or noise model based on the distinction between intra-cluster (local noise) and inter-cluster noise (transition): the local noise models the temporary absence from a residence while the transition the definitive departure towards a next residence. We analyze in detail the properties of the model and present a comprehensive solution for the extraction of temporally ordered clusters. The effectiveness of the solution is evaluated first qualitatively and next quantitatively by contrasting the segmentation with ground truth. The ground truth consists of a set of trajectories of labeled points simulating animal movement. Moreover, we show that the approach can streamline the discovery of additional derived patterns, by presenting a novel technique for the analysis of periodic movement. From a methodological perspective, a valuable aspect of this research is that it combines the theoretical investigation with the application and external validation of the segmentation framework. This paves the way to an effective deployment of the solution in broad and challenging fields such as e-science.

Keywords

Trajectories Segmentation Clustering 

Notes

Acknowledgements

The authors thank Walid Aref, Purdue University, for the discussion on the use of the WARP technique, and Roland Keys, NC Museum of Natural Sciences, for kindly providing the real data used in the experiments.

References

  1. Alewijnse S, Buchin K, Buchin M, Kölzsch A, Kruckenberg H, Westenberg M (2014) A framework for trajectory segmentation by stable criteria. In: Proceedings of ACM SIGSPATIALGoogle Scholar
  2. Amigó E, Gonzalo J, Artiles J, Verdejo F (2009) A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retr 12(4):461–486CrossRefGoogle Scholar
  3. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: Proceedings of ACM SIGMODGoogle Scholar
  4. Aronov B, Driemel A, van Kreveld M, Löffler M, Staals F (2015) Segmentation of trajectories on nonmonotone criteria. ACM Trans Algorithms 12(2):26:1–26:28MathSciNetCrossRefGoogle Scholar
  5. Basu S, Banerjee A, Mooney R (2004) Active semi-supervision for pairwise constrained clustering. In: Proceedings of SIAM international conference on data miningGoogle Scholar
  6. Berger-Tal O, Bar-David S (2015) Recursive movement patterns: review and synthesis across species. ESA Ecosphere 6(9):1–12Google Scholar
  7. Birant D, Kut A (2007) St-dbscan: an algorithm for clustering spatial–temporal data. Data Knowl Eng 60(1):208–221CrossRefGoogle Scholar
  8. Buchin M, Driemel A, van Kreveld MJ, Sacristán V (2011) Segmenting trajectories: a framework and algorithms using spatiotemporal criteria. J Spat Inf Sci 3(1):33–63Google Scholar
  9. Buchin M, Kruckenberg H, Kölzsch A (2013) Advances in spatial data handling, Springer, chap segmenting trajectories by movement states, pp 15–25Google Scholar
  10. Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of SIAM international conference on data miningGoogle Scholar
  11. Cao H, Mamoulis N, Cheung DW (2007) Discovery of periodic patterns in spatiotemporal sequences. IEEE Trans Knowl Data Eng 19(4):453–467CrossRefGoogle Scholar
  12. Cerf M, Harel J, Einhaeuser W, Koch C (2008) Predicting human gaze using low-level saliency combined with face detection. In: Advances in neural information processing systems, Curran Associates, pp 241–248Google Scholar
  13. Cudré-Mauroux P, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large trajectory data sets. In: Proceedings of IEEE international conference on data engineeringGoogle Scholar
  14. Damiani ML, Hachem F (2017) Segmentation techniques for the summarization of individual mobility data. Wiley Interdiscip Rev Data Min Knowl Discov 7(6):e1214Google Scholar
  15. Damiani ML, Issa H, Cagnacci F (2014) Extracting stay regions with uncertain boundaries from GPS trajectories: a case study in animal ecology. In: Proceedings of ACM SIGSPATIALGoogle Scholar
  16. Damiani ML, Issa H, Fotino G, Hachem F, Ranc N, Cagnacci F (2015) MigrO: a plug-in for the analysis of individual mobility behavior based on the stay region model. In: Proceedings of ACM SIGSPATIALGoogle Scholar
  17. Damiani ML, Issa H, Fotino G, Heurich M, Cagnacci F (2016) Introducing ’presence’ and ’stationarity index’ to study partial migration patterns: an application of a spatio-temporal clustering technique. Int J Geogr Inf Sci 30(5):907–928CrossRefGoogle Scholar
  18. Dodge S, Weibel R, Lautenschütz AK (2008) Towards a taxonomy of movement patterns. Inf Vis 7(3–4):240–252CrossRefGoogle Scholar
  19. Edelhoff H, Signer J, Balkenhol N (2016) Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov Ecol 4(1):21CrossRefGoogle Scholar
  20. Elfeky M, Aref W, Elmagarmid A (2005) Warp: time warping for periodicity detection. In: Proceedings of IEEE international conference on data miningGoogle Scholar
  21. Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv 45(1):12:1–12:34CrossRefMATHGoogle Scholar
  22. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of international conference on knowledge discovery and data miningGoogle Scholar
  23. Ester M, Kriegel HP, Sander J, Wimmer M, Xu X (1998) Incremental clustering for mining in a data warehousing environment. In: Proceedings of VLDBGoogle Scholar
  24. Farber I, Guennemann S, Kriegel HP, Kroeger P, Mueller E, Schubert E, Seidl T, Zimek A (2010) On using class-labels in evaluation of clusterings. In: Proceedings of international workshop on discovering, summarizing and using multiple clusteringsGoogle Scholar
  25. Gan J, Tao Y (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of ACM SIGMOD international conference on management of dataGoogle Scholar
  26. Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: geographic knowledge discovery. Springer, BerlinCrossRefGoogle Scholar
  27. Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference. In: International encyclopedia of statistical science. Springer, pp 977–979Google Scholar
  28. Groeve JD, de Weghe NV, Ranc N, Neutens T, Ometto L, Rota-Stabelli O, Cagnacci F (2016) Extracting spatio-temporal patterns in animal trajectories: an ecological application of sequence analysis methods. Methods Ecol Evol 7(3):369–379CrossRefGoogle Scholar
  29. Gudmundsson J, Laube P, Wolle T (2008) Movement patterns in spatio-temporal data. In: Encyclopedia of GIS. Springer, US, pp 726–732Google Scholar
  30. Gurarie E, Andrews RD, Laidre KL (2009) A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12:395–408CrossRefGoogle Scholar
  31. Güting R, Valdés F, Damiani ML (2015) Symbolic trajectories. Trans Spat Algorithms Syst 1(2):7:1–7:51Google Scholar
  32. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., BurlingtonMATHGoogle Scholar
  33. Kang J, Welbourne W, Stewart B, Borriello G (2004) Extracting places from traces of locations. In: Proceedings of ACM international workshop on wireless mobile applications and services on WLAN hotspotsGoogle Scholar
  34. Keogh E, Chu S, Hart D, Pazzani M (2001) An online algorithm for segmenting time series. In: Proceedings of IEEE international conference on data miningGoogle Scholar
  35. Li Z, Han J (2014) Mining periodicity from dynamic and incomplete spatiotemporal data. In: Data mining and knowledge discovery for big data. Springer, pp 41–81Google Scholar
  36. Li Z, Han J, Ji M, Tang LA, Yu Y, Ding B, Lee JG, Kays R (2011) Movemine: mining moving object data for discovery of animal movement patterns. ACM Intell Syst Technol 2(4):1–32CrossRefGoogle Scholar
  37. Michelot T, Langrock R, Bestley S, Jonsen I, Photopoulou T, Patterson T (2017) Estimation and simulation of foraging trips in land-based marine predators. Ecology 98(7):1932–1944CrossRefGoogle Scholar
  38. Moorter BV, Visscher D, Benhamou S, Borger L, B M, Gaillard JM (2009) Memory keeps you at home: a mechanistic model for home range emergence. Oikos 118(5):641–652CrossRefGoogle Scholar
  39. Morales J, Haydon D, Frair J, Holsinger KE, Fryxell J (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445CrossRefGoogle Scholar
  40. Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of ACM symposium on applied computingGoogle Scholar
  41. Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-Divanis A, Macedo J, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and analysis. Comput Surv 45(4):1–32CrossRefGoogle Scholar
  42. Patlak CS (1953) Random walk with persistence and external bias. Bull Math Biophys 15(3):311–338MathSciNetCrossRefMATHGoogle Scholar
  43. Rasetic S, Sander J, Elding J, Nascimento MA (2005) A trajectory splitting model for efficient spatio-temporal indexing. In: Proceedings of ACM international conference on very large data basesGoogle Scholar
  44. Worton B (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168CrossRefGoogle Scholar
  45. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):1–41CrossRefGoogle Scholar
  46. Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer, BerlinCrossRefGoogle Scholar
  47. Zheng Y, Zhang L, Ma Z, Xie X, Ma W (2011) Recommending friends and locations based on individual location history. ACM Trans Web 5(1):1–44CrossRefGoogle Scholar
  48. Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: concepts, methodologies, and applications. ACM Trans Intell Syst Technol 5(3):1–55Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MilanMilanItaly
  2. 2.Department of Biodiversity and Molecular EcologyFondazione E. MachSan Michele all’AdigeItaly
  3. 3.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations