Advertisement

Gelam honey promotes ex vivo corneal fibroblasts wound healing

  • Alia Md. Yusof
  • Norzana Abd GhafarEmail author
  • Taty Anna Kamarudin
  • Kien-Hui Chua
  • Muhammad Fairuz Azmi
  • Sook-Luan Ng
  • Yasmin Anum Mohd Yusof
Original Article
  • 14 Downloads

Abstract

This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.

Keywords

Corneal fibroblasts Ex vivo Gelam honey Wound healing 

Notes

Acknowledgements

We would like to thank Universiti Kebangsaan Malaysia (UKM) for providing the financial aid to conduct this research under the postgraduate grant (FF-393-2011). We would also like to thank all the staffs of Biotechnology Lab, Department of Physiology UKM for providing the facilities to conduct all sterile procedures in this research. We would also like to thank the staffs of Anatomy Lab, Department of Anatomy, UKM to provide the facilities for all staining procedures in this research.

Funding

This study was supported by Universiti Kebangsaan Malaysia (UKM) Grant FF-393-2011.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. Abd Ghafar N, Chua KH, Wan Ngah WZ, Che Hamzah J, Othman F, Abd Rahman R, Hj Idrus R (2014) Phenotypic characterization of culture expanded rabbit limbal corneal keratocytes. Cell Tissue Bank 15:25–34.  https://doi.org/10.1007/s10561-012-9360-y CrossRefPubMedGoogle Scholar
  2. Afrin S, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Manna PP, Battino M, Giampieri F (2018) Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem Toxicol 121:203–213.  https://doi.org/10.1016/j.fct.2018.09.001 CrossRefPubMedGoogle Scholar
  3. Ahmed F, House RJ, Feldman BH (2015) Corneal abrasions and corneal foreign bodies. Prim Care 42:363–375.  https://doi.org/10.1016/j.pop.2015.05.004 CrossRefPubMedGoogle Scholar
  4. Alam F, Islam MA, Gan SH, Khalil MI (2014) Honey: a potential therapeutic agent for managing diabetic wounds. Evid Based Complement Alternat Med.  https://doi.org/10.1155/2014/169130 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amjadi S, Mai K, McCluskey P, Wakefield D (2013) The role of lumican in ocular disease. ISRN Ophthalmol 2013:632302.  https://doi.org/10.1155/2013/632302 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aziz Z, Abdul Rasool Hassan B (2017) The effects of honey compared to silver sulfadiazine for the treatment of burns: a systematic review of randomized controlled trials. Burns 43:50–57.  https://doi.org/10.1016/j.burns.2016.07.004 CrossRefPubMedGoogle Scholar
  7. Azmi MF, Ghafar NA, Hamzah CJ, Luan NS, Hui CK (2017) The potential of Gelam honey in promoting the proliferative phase of corneal epithelialization. Wounds 29:327–332PubMedGoogle Scholar
  8. Barequet IS, Harizman N, Ziv H, Rosner M (2014) Healing rate of corneal erosions. Cornea 33:1080–1082.  https://doi.org/10.1097/ico.0000000000000215 CrossRefPubMedGoogle Scholar
  9. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F (2010) Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 29:312–334.  https://doi.org/10.1016/j.preteyeres.2010.03.001 CrossRefPubMedGoogle Scholar
  10. Bösmüller H, Fischer A, Pham DL, Fehm T, Capper D, von Deimling A, Bonzheim I, Staebler A, Fend F (2013) Detection of the BRAF V600E mu- tation in serous ovarian tumors: a comparative analysis of immunohisto- chemistry with a mutation-specific monoclonal antibody and allele-specific PCR. Hum Pathol 44:329–335.  https://doi.org/10.1016/j.humpath.2012.07.010 CrossRefPubMedGoogle Scholar
  11. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype and function. Am J Pathol 178:19–25.  https://doi.org/10.1016/j.ajpath.2010.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cai J, Zhou Q, Wang Z, Guo R, Yang R, Yang X, Li W, Ahmad N, Chen Q, Hui Q, Wang X (2019) Comparative analysis of KGF-2 and bFGF in prevention of excessive wound healing and scar formation in a corneal alkali burn model. Cornea.  https://doi.org/10.1097/ICO.0000000000002134 CrossRefPubMedGoogle Scholar
  13. Call M, Elzarka M, Kunesh M, Hura N, Birk DE, Kao WW (2019) Therapeutic efficacy of mesenchymal stem cells for the treatment of congenital and acquired corneal opacity. Mol Vis 25:415–426PubMedPubMedCentralGoogle Scholar
  14. Cass DL, Sylvester KG, Yang EY, Crombleholme TM, Adzick NS (1997) Myofibroblast persistence in fetal sheep wounds is associated with scar formation. J Pediatr Surg 32:1017–1022CrossRefGoogle Scholar
  15. Cernak M, Majtanova N, Cernak A, Majtan J (2012) Honey prophylaxis reduces the risk of endophthalmitis during perioperative period of eye surgery. Phytother Res 26:613–616.  https://doi.org/10.1002/PTR.3606 CrossRefPubMedGoogle Scholar
  16. Chan MF, Li J, Bertrand A, Casbon A, Lin JH, Maltseva I, Werb Z (2013) Protective effects of matrix metalloproteinase-12 following corneal injury. J Cell Sci 126:3948–3960.  https://doi.org/10.1242/jc.128033 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen S, Birk DE (2013) The regulatory of small leucine-rich proteoglycans in extracellular assembly. FEBS J 280:2120–2137CrossRefGoogle Scholar
  18. Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V (2013) Ocular- aldehyde dehydrogenase: protection against ultraviolet damage and main- tenance of transparency for vision. Prog Retin Eye Res 33:28–39.  https://doi.org/10.1016/j.preteyeres.2012.10.001 CrossRefPubMedGoogle Scholar
  19. Chen S, Mienaltowski MJ, Birk DE (2015) Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res 133:69–80.  https://doi.org/10.1016/j.exer.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Larnas L, Martinez Flórez S, Agudo Toyos P, Quiles JL, Giampieri F, Battino M (2018) Phenolic compounds in honey and their associated health benefits: a review. Molecules 23:E2322.  https://doi.org/10.3390/molecules23092322 CrossRefPubMedGoogle Scholar
  21. Coger V, Million N, Rehbock C, Sures B, Nachev M, Barcikowski S, Wistuba N, Strauß S, Vogt PM (2019) Tissue concentrations of zinc, iron, copper and magnesium during the phases of full thickness wound healing in a rodent model. Biol Trace Elem Res 191:167–176.  https://doi.org/10.1007/S12011-018-1600-y CrossRefPubMedGoogle Scholar
  22. Dreier B, Thomasy SM, Mendonsa R, Raghunathan VK, Russell P, Murphy CJ (2013) Substratum compliance modulates corneal fibroblast to myofibroblast transformation. Invest Opthalmol Vis Sci 54:5901–5907.  https://doi.org/10.1167/iovs.12-11575 CrossRefGoogle Scholar
  23. Fernándex-Pérez J, Ahearne M (2019) Influence of biochemical cues in human corneal stromal cell phenotype. Curr Eye Res 44:135–146.  https://doi.org/10.1080/02713683.2018.1536216 CrossRefGoogle Scholar
  24. Fukagawa K, Okada N, Fujishima H, Nakajima T, Takano Y, Tanaka M, Dogru M, Satake Y, Tsubota K, Saito H (2009) Corneal and conjunctival fibroblasts are major sources of eosinophil-recruiting chemokines. Allergol Int 58(4):499–508.  https://doi.org/10.2332/allergolint.09-OA-0092 CrossRefPubMedGoogle Scholar
  25. Ghafar NA, Rahman RA, Hamzah JC, Hui CK, Othman F, Aminuddin BS, Ruszymah BHI (2007) Rabbit limbal epithelial cells maintains its stemness in serum-free and feeder layer-free culture system. Tissue Eng Regen Med 4:557–565Google Scholar
  26. Giannaccare G, Versura P, Buzzi M, Primavera L, Pellegrini M, Campos EC (2017) Blood derived eye drops for the treatment of cornea and ocular surface diseases. Transfus Apher Sci 56:595–604.  https://doi.org/10.1016/j.transci.2017.07.023 CrossRefPubMedGoogle Scholar
  27. Hasenan SM, Karsani SA, Jubri Z (2018) Modulation of age related protein expression changes by gelam honey in cardiac mitochondrial rats. Exp Gerontol 113:1–9.  https://doi.org/10.1016/j.exger.2018.09.001 CrossRefPubMedGoogle Scholar
  28. Hassell JR, Birk DE (2010) The molecular basis of corneal transparency. Exp Eye Res 91:326–335.  https://doi.org/10.1016/j.exer.2010.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jester JV, Brown D, Pappa A, Vasiliou V (2012) Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Invest Ophthalmol Vis Sci 53:770–778.  https://doi.org/10.1167/iovs.11-9092 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jull AB, Cullum N, Dumville JC, Westby MJ, Deshpande S, Walker N (2015) Honey as a topical treatment for wounds. Cochrane Database Syst Rev 6:CD0050283.  https://doi.org/10.1002/14651858.cd005083.pub4 CrossRefGoogle Scholar
  31. Kapoor P, Deshmukh R (2012) VEGF: a critical driver for angiogenesis and subsequent tumor growth: An IHC study. J Oral Maxillofac Pathol 16:330–337.  https://doi.org/10.4103/0973-029X.102478 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ker-Woon C, Ghafar NA, Hui CK, Yusof YAM, Ngah WZW (2015) The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biol 16:2.  https://doi.org/10.1186/s12860-015-0053-9 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim SJ, Flach AJ, Jampol LM (2010) Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol 55:108–133.  https://doi.org/10.1016/j.survophthal.2009.07.005 CrossRefPubMedGoogle Scholar
  34. Kivanany PB, Grose KC, Yonet-Tanyeri N, Manohar S, Sunkara Y, Lam KH, Schmidtke DW, Varner VD, Varner VD, Petroll WM (2018) An in vitro model for assessing corneal keratocyte spreading and migration on aligned fibrillar collagen. J Funct Biomater 21:E54.  https://doi.org/10.3390/jfb9040054 CrossRefGoogle Scholar
  35. LaGier AJ, Gordon GM, Katzman LR, Vasiliou V, Fini ME (2013) Mecha- nisms for PDGF, a serum cytokine, stimulating loss of corneal keratocyte crystallins. Cornea 32:1269–1275.  https://doi.org/10.1097/ICO.0b013e318296e0b9 CrossRefPubMedGoogle Scholar
  36. Li Y, Chen HJ, Zhang H, Wu JG, Hu YT, Ma ZZ (2016) Effects of different sutures on fibrosis and wound healing in a rabbit model of corneal wounds. Exp Ther Med 12:2827–2834.  https://doi.org/10.3892/etm.2016.3703 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ljubimov AV, Saghizadeh M (2015) Progress in corneal wound healing. Prog Retin Eye Res 49:17–45.  https://doi.org/10.1016/j.preteyeres.2015.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lorenzo-Martin E, Gallego-Muñoz P, Mar S, Fernández I, Cidad P, Martinez-Garcia MC (2019) Dynamic changes of the extracellular matrix during corneal wound healing. Exp Eye Res 186:107704.  https://doi.org/10.1016/j.exer.2019.107704 CrossRefPubMedGoogle Scholar
  39. Majtanova N, Cernak M, Majtan J (2016) Honey: a Natural Remedy for Eye Diseases. Forsch Komplementmed 23:364–369.  https://doi.org/10.1159/000452116 CrossRefPubMedGoogle Scholar
  40. Manyi-Loh CE, Clarke AM, Ndip RN (2011) An overview of honey: thera- peutic properties and contribution in nutrition and human health. Afric J Microbiol Res 5:844–852.  https://doi.org/10.5897/AJMR10.008 CrossRefGoogle Scholar
  41. Menghini M, Knecht PB, Kaufmann C, Kovacs R, Watson SL, Landau K, Bosch MM (2013) Treatment of traumatic corneal abrasions: a three-arm, prospective, randomized study. Ophthalmic Res 50:13–18.  https://doi.org/10.1159/000347125 CrossRefPubMedGoogle Scholar
  42. Miyagi H, Thomasy SM, Russell P, Murphy CJ (2018) The role of hepatocyte growth factor in corneral wound healing. Exp Eye Res 166:49–55.  https://doi.org/10.1016/j.exer.2017.10.006 CrossRefPubMedGoogle Scholar
  43. Mohan RR, Tripathi R, Sharma A, Sinha PR, Giuliano EA, Hesemann NP, Chaurasia SS (2019) Decorin antagonizes corneal fibroblast migration via caveolae-mediated endocytosis of epidermal growth factor receptor. Exp Eye Res 180:200–207.  https://doi.org/10.1016/j.exer.2019.01.001 CrossRefPubMedGoogle Scholar
  44. Molan PC (2011) The evidence and the rationale for the use of honey as wound dressing. Wound Pract Res 19:204–220Google Scholar
  45. Moniruzzaman M, Sulaiman SA, Khalil MI, Gan SH (2013) Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: a comparison with manuka honey. Chem Centr J 7:1–12.  https://doi.org/10.1186/1752-153X-7-138 CrossRefGoogle Scholar
  46. Muppala S, Raghunathan VK, Jalilian I, Thomasy S, Murphy CJ (2019) YAP and TAZ are distinct effectors of corneal myofibroblast transformation. Exp Eye Res 180:102–109.  https://doi.org/10.1016/j.exer.2018.12.009 CrossRefPubMedGoogle Scholar
  47. Myrna KE, Pot SA, Murphy CJ (2009) Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Vet Ophthalmol 12:25–27.  https://doi.org/10.1111/j.1463-5224.2009.00742.x CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618.  https://doi.org/10.1136/bjophthalmol-2011-300539 CrossRefPubMedGoogle Scholar
  49. Pereira RF, Bártolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care 5:208–229.  https://doi.org/10.1089/wound.2013.0506 CrossRefGoogle Scholar
  50. Putri Shuhaili S, Haszianaliza H, Muhammad Fairuz A, Zar CT (2016) Gelam honey: a review of its antioxidant, anti-inflammatory, anticancer and wound healing aspects. Med Health 11:105–116.  https://doi.org/10.17576/mh.2016.1102.01 CrossRefGoogle Scholar
  51. Sarenac T, Trapecar M, Gradisnik L, Rupnik MS, Pahor D (2016) Single-cel analysis reveals IGF-1 potentiation of inhibition of the TGF-β/Smad pathway of fibrosis in human keratocytes in vitro. Sci Rep 6:34373.  https://doi.org/10.1038/srep34373 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sloneicka M, Danielson P (2019) Substance P induces fibrotic changes through activation of the RhoA/ROCK pathway in an in vitro human corneal fibrosis model. J Mol Med.  https://doi.org/10.1007/s00109-01-01827-4 CrossRefGoogle Scholar
  53. Tan MK, Hasan Adli DS, Tumiran MA, Abdulla MA, Yusoff KM (2012) The efficacy of gelam honey dressing towards excisional wound healing. Evid Based Complement Alternat Med 2012:805932.  https://doi.org/10.1155/2012/805932 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE (2016) The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 142:110–118.  https://doi.org/10.1016/j.exer.2014.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vallianou NG, Gounari P, Skourtis A, Panagos J, Kazazis C (2014) Honey and its anti-inflammatory, anti-bacterial and anti-oxidant properties. Gen Med 10:132Google Scholar
  56. van der Valk J, Brunner D, Smet KD, Svenningsen AF, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063.  https://doi.org/10.1016/j.tiv.2010.03.016 CrossRefPubMedGoogle Scholar
  57. Wilson SE (2012) Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res 99:78–88.  https://doi.org/10.1016/j.exer.2012.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wipperman JL, Dorsch JN (2013) Evaluation and management of corneal abrasions. Am Fam Physician 87:114–120PubMedGoogle Scholar
  59. Wolf M, Clay SM, Zheng S, Pan P, Chan MF (2019) MMP12 inhibits corneal neovascularization and inflammation through regulation of CCL2. Sci Rep 9:11579.  https://doi.org/10.1038/s4158-019-47831-z CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wu B, Chen D, Hu S (2019) Corneal stromal remodeling using stem cells-advances and potential application: a literature review. J Stem Cell Res Ther 9:4.  https://doi.org/10.4172/2157-7633.1000450 CrossRefGoogle Scholar
  61. Yamamoto T, Otake H, Hiramatsu N, Yamamoto N, Taga A, Nagai N (2018) A proteomic approach for understanding the mechanisms of delayed corneal wound healing in diabetic keratopathy using diabetic model rat. Int J Mol Sci 19:3635.  https://doi.org/10.3390/ijms19113635 CrossRefPubMedCentralGoogle Scholar
  62. Yelin I, Kishony R (2018) Antibiotic resistance. Cell 172:1136.  https://doi.org/10.1016/j.cell.2018.02.018 CrossRefPubMedGoogle Scholar
  63. Yusof AM, Ghafar NA, Kamarudin TA, Hui CK, Yusof YA (2016) Gelam honey potentiates ex vivo corneal keratocytes proliferation with desirable phenotype expression. BMC Complement Altern Med 16:76.  https://doi.org/10.1186/s12906-016-1055-7 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zohdi RM, Zakaria ZAB, Yusof N, Mustapha NM, Abdullah MNH (2012) Gelam (Melaleuca spp.) honey-based hydrogel as burn wound dressing. Evid Based Complement Alternat Med.  https://doi.org/10.1155/2012/843025 CrossRefGoogle Scholar
  65. Zohdi RM, Mukhtar SM, Said S, Azmi NAM, Ali AA (2014) A comparative study of the wound healing properties of Gelam honey and silver sulfadiazine in diabetic rats. In: IECBES 2014, conference proceedings—2014 IEEE conference on biomedical engineering and sciences: “Miri, where engineering in medicine and biology and humanity meet”. Miri, Sarawak, Malaysia, pp 247–250.  https://doi.org/10.1109/iecbes.2014.7047495

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alia Md. Yusof
    • 1
    • 2
  • Norzana Abd Ghafar
    • 1
    Email author
  • Taty Anna Kamarudin
    • 1
  • Kien-Hui Chua
    • 3
  • Muhammad Fairuz Azmi
    • 1
    • 4
  • Sook-Luan Ng
    • 3
    • 5
  • Yasmin Anum Mohd Yusof
    • 6
  1. 1.Department of Anatomy, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  2. 2.Department of Basic Science, Faculty of Health SciencesUniversiti Teknologi MARA Cawangan Selangor Puncak AlamPuncak AlamMalaysia
  3. 3.Department of Physiology, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  4. 4.Discipline of Anatomy, Faculty of MedicineUniversiti Teknologi MARA, Jalan HospitalSungai BulohMalaysia
  5. 5.Craniofacial Diagnostic and Bioscience Centre, Faculty of DentistryUniversiti Kebangsaan Malaysia Cawangan Kampus Kuala LumpurKuala LumpurMalaysia
  6. 6.Department of Biochemistry, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia

Personalised recommendations