Advertisement

Cytotechnology

, Volume 71, Issue 2, pp 647–663 | Cite as

Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases

  • Amaneh Mohammadi Roushandeh
  • Yoshikazu Kuwahara
  • Mehryar Habibi RoudkenarEmail author
Review

Abstract

Mitochondria are attractive cellular organelles which are so interesting in both basic and clinical research, especially after it was found that they were arisen as a bacterial intruder in ancient cells. Interestingly, even now, they are the focus of many investigations and their function and relevance to health and disease have remained open questions. More recently, research on mitochondria have turned out their potential application in medicine as a novel therapeutic intervention. The importance of this issue is highlighted when we know that mitochondrial dysfunction can be observed in a variety of diseases such as cardiovascular diseases, neurodegenerative diseases, ischemia, diabetes, renal failure, skeletal muscles disorders, liver diseases, burns, aging, and cancer progression. In other words, transplantation of viable mitochondria into the injured tissues would replace or augment damaged mitochondria, allowing the rescue of cells and restoration of the normal function. Therefore, mitochondrial transplantation would be revolutionary for the treatment of a variety of diseases in which conventional therapies have proved unsuccessful. Here, we describe pieces of evidence of mitochondrial transplantation, discuss and highlight the current and future directions to show why mitochondrial transplantation could be a master key for treatment of a variety of diseases or injuries.

Keywords

Mitochondria dysfunction Reactive oxygen species Neurodegenerative diseases Heart failure Mitochondrial transplantation 

Notes

Acknowledgements

Part of this study was supported by National Institute for Medical Research Development (Grant No. 962134).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499CrossRefPubMedGoogle Scholar
  2. Ahmad T et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33(9):994–1010PubMedPubMedCentralGoogle Scholar
  3. Aimo A et al (2016) Targeting mitochondrial dysfunction in chronic heart failure: current evidence and potential approaches. Curr Pharm Des 22:4807–4822CrossRefPubMedGoogle Scholar
  4. Alborzi S, Madadi G, Samsami A, Soheil P, Azizi M, Alborzi M, Bakhshaie P (2015) Decreased ovarian reserve: any new hope? Minerva Ginecol 67:149–167PubMedGoogle Scholar
  5. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750CrossRefPubMedGoogle Scholar
  6. Bach D et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197CrossRefPubMedGoogle Scholar
  7. Berridge M, Herst P, Rowe M, Schneider R, McConnell M (2018) Mitochondrial transfer between cells: methodological constraints in cell culture and animal models. Anal Biochem 552:75–80CrossRefPubMedGoogle Scholar
  8. Boczonadi V et al (2018) Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum Mol Genet 27:2187–2204CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 11:80CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bragoszewski P, Turek M, Chacinska A (2017) Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system. Open Biol 7:170007CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caicedo A et al (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 5:9073CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cantó C (2018) Mitochondrial dynamics: shaping metabolic adaptation. Int Rev Cell Mol Biol 340:129–167CrossRefPubMedGoogle Scholar
  13. Chang J-C et al (2016) Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res 170:40–56 e43 CrossRefPubMedGoogle Scholar
  14. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169–R176CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen Y et al (2017) Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats. Transl Res 180:91–102CrossRefPubMedGoogle Scholar
  16. Chou SH et al (2017) Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48:2231–2237.  https://doi.org/10.1161/strokeaha.117.017758 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cid-Castro C, Hernández-Espinosa DR, Morán J (2018) ROS as regulators of mitochondrial dynamics in neurons. Cell Mol Neurobiol 38:995–1007CrossRefPubMedGoogle Scholar
  18. Cloonan SM, Choi AM (2016) Mitochondria in lung disease. J Clin Invest 126:809–820CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, Pedro J, McCully JD (2017) Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 7:17450CrossRefPubMedPubMedCentralGoogle Scholar
  20. Di Domenico F, Barone E, Perluigi M, Butterfield DA (2017) The triangle of death in Alzheimer’s disease brain: the aberrant cross-talk among energy metabolism, mammalian target of rapamycin signaling, and protein homeostasis revealed by redox proteomics. Antioxid Redox Signal 26:364–387CrossRefPubMedGoogle Scholar
  21. Ehses S et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036CrossRefPubMedPubMedCentralGoogle Scholar
  22. Elliott R, Jiang X, Head J (2015) Mitochondria organelle transplantation: a potential cellular biotherapy for cancer. J Surg S(2):9Google Scholar
  23. Emani SM, McCully JD (2018) Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7:169CrossRefPubMedPubMedCentralGoogle Scholar
  24. Emani SM, Piekarski BL, Harrild D, Del Nido PJ, McCully JD (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154:286–289.  https://doi.org/10.1016/j.jtcvs.2017.02.018 CrossRefPubMedGoogle Scholar
  25. Faizi M, Seydi E, Abarghuyi S, Salimi A, Nasoohi S, Pourahmad J (2016) A search for mitochondrial damage in Alzheimer’s disease using isolated rat brain mitochondria. Iran J Pharm Res 15:185PubMedPubMedCentralGoogle Scholar
  26. Forbes JM (2016) Mitochondria-power players in kidney function? Trends Endocrinol Metab 27:441–442.  https://doi.org/10.1016/j.tem.2016.05.002 CrossRefPubMedGoogle Scholar
  27. Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A (2016) Melatonin: a potential anti-oxidant therapeutic agent for mitochondrial dysfunctions and related disorders. Rejuvenation Res 19:21–40CrossRefPubMedGoogle Scholar
  28. Giannoccaro MP, La Morgia C, Rizzo G, Carelli V (2017) Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord 32:346–363CrossRefPubMedGoogle Scholar
  29. Gollihue JL et al (2018) Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma 35:1800–1818CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gollihue JL, Patel SP, Mashburn C, Eldahan KC, Sullivan PG, Rabchevsky AG (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 287:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grimm A, Mensah-Nyagan AG, Eckert A (2016) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101CrossRefPubMedGoogle Scholar
  32. Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hayakawa K et al (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36:1404–1410CrossRefPubMedGoogle Scholar
  34. Hayakawa K et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heidari MM, Khatami M, Danafar A, Dianat T, Farahmand G, Talebi AR (2016) Mitochondrial genetic variation in iranian infertile men with varicocele. Int J Fertil Steril 10:303–309PubMedPubMedCentralGoogle Scholar
  36. Hoppel CL, Tandler B, Fujioka H, Riva A (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang X et al (2013) Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci 110:2846–2851CrossRefPubMedGoogle Scholar
  38. Huang PJ et al (2016) Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transpl 25:913–927.  https://doi.org/10.3727/096368915x689785 CrossRefGoogle Scholar
  39. Jiang D et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kabekkodu SP, Chakrabarty S, Shukla V, Varghese VK, Singh KK, Thangaraj K, Satyamoorthy K (2015) Mitochondrial biology: from molecules to diseases. Mitochondrion 24:93–98.  https://doi.org/10.1016/j.mito.2015.07.008 CrossRefPubMedGoogle Scholar
  41. Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta 2:30241–30244Google Scholar
  42. Kaza AK et al (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153:934–943.  https://doi.org/10.1016/j.jtcvs.2016.10.077 CrossRefPubMedGoogle Scholar
  43. Kim YJ et al (2017) Association between Mitofusin 2 gene polymorphisms and late-onset Alzheimer’s disease in the Korean population. Psychiatry Investig 14:81–85CrossRefPubMedGoogle Scholar
  44. Kim MJ, Hwang JW, Yun C-K, Lee Y, Choi Y-S (2018) Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep 8:3330CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kong LH, Liu Z, Li H, Zhu L, Chen SL, Xing FQ (2003a) First twins born in Mainland China by autologous granular cell mitochondria transfer. Di Yi Jun Yi Da Xue Xue Bao 23:990–991PubMedGoogle Scholar
  46. Kong LH, Liu Z, Li H, Zhu L, Xing FQ (2003b) Pregnancy in a 46-year-old woman after autologous granular cell mitochondria transfer. Di Yi Jun Yi Da Xue Xue Bao 23:743–747PubMedGoogle Scholar
  47. Kuck JL, Obiako BO, Gorodnya OM, Pastukh VM, Kua J, Simmons JD, Gillespie MN (2015) Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs. Am J Phys Lung Cell Mol Phys 308:1078–1085Google Scholar
  48. Kumar SR (2017) Mitochondrial transplantation: another miracle of molecular medicine? J Thorac Cardiovasc Surg 154:284–285CrossRefPubMedGoogle Scholar
  49. Kuo C-C et al (2017) Prevention of axonal degeneration by perineurium injection of mitochondria in a sciatic nerve crush injury model. Neurosurgery 80:475–488CrossRefPubMedGoogle Scholar
  50. Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, Fukumoto M (2016) The involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys 96:556–565.  https://doi.org/10.1016/j.ijrobp.2016.07.002 CrossRefPubMedGoogle Scholar
  51. Kuznetsova I, Siira SJ, Shearwood AJ, Ermer JA, Filipovska A, Rackham O (2017) Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucl Acids Res 45:5487–5500CrossRefPubMedGoogle Scholar
  52. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845CrossRefGoogle Scholar
  53. Lim TK, Rone MB, Lee S, Antel JP, Zhang J (2015) Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 11:58CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu C-S, Chang J-C, Kuo S-J, Liu K-H, Lin T-T, Cheng W-L, Chuang S-F (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146CrossRefPubMedGoogle Scholar
  55. Lopez-Crisosto C et al (2017) Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14:342–360CrossRefPubMedGoogle Scholar
  56. Loureiro R, Mesquita KA, Magalhaes-Novais S, Oliveira PJ, Vega-Naredo I (2017) Mitochondrial biology in cancer stem cells. Semin Cancer Biol.  https://doi.org/10.1016/j.semcancer.2017.06.012 CrossRefPubMedGoogle Scholar
  57. Lu J et al (2017) Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8:15539PubMedPubMedCentralGoogle Scholar
  58. Ma S et al (2017) SIRT1 Activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 4602715:13Google Scholar
  59. Masuzawa A et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H966–H982.  https://doi.org/10.1152/ajpheart.00883.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mathis S, Couratier P, Julian A, Corcia P, Le Masson G (2017) Current view and perspectives in amyotrophic lateral sclerosis. Neural Regen Res 12:181CrossRefPubMedPubMedCentralGoogle Scholar
  61. May-Panloup P et al (2016) Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 22:725–743.  https://doi.org/10.1093/humupd/dmw028 CrossRefPubMedGoogle Scholar
  62. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol 296:H94–H105CrossRefPubMedGoogle Scholar
  63. McCully JD, Levitsky S, Pedro J, Cowan DB (2016) Mitochondrial transplantation for therapeutic use. Clin Transl Med 5:16CrossRefPubMedPubMedCentralGoogle Scholar
  64. McCully JD, Cowan DB, Emani SM, Del Nido PJ (2017) Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion 34:127–134.  https://doi.org/10.1016/j.mito.2017.03.004 CrossRefPubMedGoogle Scholar
  65. Moreno-Lastres D, Fontanesi F, García-Consuegra I, Martín MA, Arenas J, Barrientos A, Ugalde C (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335CrossRefPubMedPubMedCentralGoogle Scholar
  66. Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13:68CrossRefPubMedPubMedCentralGoogle Scholar
  67. Moskowitzova K et al (2018) Mitochondrial transplantation prolongs cold preservation time in murine cardiac transplantation. J Heart Lung Transpl 37:S22–S23CrossRefGoogle Scholar
  68. Nzigou BM, Gerbal-Chaloin S, Bokus A, Daujat-Chavanieu M, Jorgensen C, Hugnot J-P, Vignais M-L (2017) MitoCeption: transferring isolated human MSC mitochondria to glioblastoma stem cells. J Vis Exp.  https://doi.org/10.3791/55245 CrossRefGoogle Scholar
  69. Oktay K et al (2015) Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: a clinical translation. Reprod Sci 22:1612–1617.  https://doi.org/10.1177/1933719115612137 CrossRefPubMedGoogle Scholar
  70. Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7:201CrossRefPubMedPubMedCentralGoogle Scholar
  71. Onyango IG, Khan SM, Bennett JP Jr (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci 22:854–872CrossRefGoogle Scholar
  72. Pacak CA et al (2015) Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology open:BIO201511478Google Scholar
  73. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci 25:31CrossRefPubMedPubMedCentralGoogle Scholar
  74. Picone P et al (2016) Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging 8:1718CrossRefPubMedPubMedCentralGoogle Scholar
  75. Preble JM, Kondo H, Levitsky S, McCully JD (2013) Quality control parameters for mitochondria transplant in cardiac tissue. Mol Biol 2:1008Google Scholar
  76. Preble J, Kondo H, Levitsky S, James D, McCully J (2014a) Quality control parameters for mitochondria transplant in cardiac tissue JSM Biochem. Mol Biol 2:1008Google Scholar
  77. Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD (2014b) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp.  https://doi.org/10.3791/51682 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD (2014c) Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp 5:51682.  https://doi.org/10.3791/51682 CrossRefGoogle Scholar
  79. Ralto KM, Parikh SM (2016) Mitochondria in acute kidney injury. Semin Nephrol 36:8–16.  https://doi.org/10.1016/j.semnephrol.2016.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ramirez-Barbieri G et al (2018) Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion.  https://doi.org/10.1016/j.mito.2018.03.002 CrossRefPubMedGoogle Scholar
  81. Robicsek O et al (2017) Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull 44:432–442CrossRefPubMedCentralGoogle Scholar
  82. Rocca CJ et al (2017) Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med 9:eaaj2347CrossRefPubMedPubMedCentralGoogle Scholar
  83. Roudkenar MH, Halabian R, Tehrani HA, Amiri F, Jahanian-Najafabadi A, Roushandeh AM, Abbasi-Malati Z (2018) Lipocalin 2 enhances mesenchymal stem cell-based cell therapy in acute kidney injury rat model. Cytotechnology 70:103–117CrossRefPubMedGoogle Scholar
  84. Roushandeh AM, Bahadori M, Roudkenar MH (2017) Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch Med Res 48:133–146CrossRefPubMedGoogle Scholar
  85. Rub C, Wilkening A, Voos W (2017) Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 367:111–123.  https://doi.org/10.1007/s00441-016-2485-8 CrossRefPubMedGoogle Scholar
  86. Sabbah HN (2016) Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther 14:1305–1313CrossRefPubMedGoogle Scholar
  87. Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J (2015) Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 6:461–471.  https://doi.org/10.1016/j.redox.2015.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Salimi A, Roudkenar MH, Seydi E, Sadeghi L, Mohseni A, Pirahmadi N, Pourahmad J (2017) Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest 35:174–186.  https://doi.org/10.1080/07357907.2016.1276187 CrossRefPubMedGoogle Scholar
  89. Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66:10–16CrossRefPubMedGoogle Scholar
  90. Schirone L et al (2017) A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev 3920195:2Google Scholar
  91. Shaki F, Shayeste Y, Karami M, Akbari E, Rezaei M, Ataee R (2017) The effect of epicatechin on oxidative stress and mitochondrial damage induced by homocycteine using isolated rat hippocampus mitochondria. Res Pharm Sci 12:119CrossRefPubMedPubMedCentralGoogle Scholar
  92. Siira SJ, Shearwood AJ, Bracken CP, Rackham O, Filipovska A (2017) Defects in RNA metabolism in mitochondrial disease. Int J Biochem Cell Biol 85:106–113CrossRefPubMedGoogle Scholar
  93. Simmons JD, Gillespie MN (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardialinfarction patients. Coron Artery Dis 26:286–288CrossRefPubMedPubMedCentralGoogle Scholar
  94. Simula L, Campello S (2018) Monitoring the mitochondrial dynamics in mammalian cells. Methods Mol Biol 1782:267–285CrossRefPubMedGoogle Scholar
  95. Simula L, Nazio F, Campello S (2017) The mitochondrial dynamics in cancer and immune-surveillance. Semin Cancer Biol 47:29–42CrossRefPubMedGoogle Scholar
  96. Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M (2017) Tissue-and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid Med Cell Longev.  https://doi.org/10.1155/2017/1534056 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tymoczko JL, Berg JM, Stryer L (2011) Biochemistry: a short course. Macmillan, New YorkGoogle Scholar
  99. Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11:797–813.  https://doi.org/10.1016/j.mito.2010.09.012 CrossRefPubMedGoogle Scholar
  100. von Hardenberg A, Maack C (2017) Mitochondrial therapies in heart failure. Handb Exp Pharmacol 243:491–514CrossRefGoogle Scholar
  101. Wang X, Gerdes H-H (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wang XM, Chen KM, Wang Y, Shi SP (1986) Functional changes in rat-liver mitochondria during the early phase of burn injury. Burns Incl Therm Inj 12:461–464CrossRefPubMedGoogle Scholar
  103. Wang J et al (2018) Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Therapy 9:106CrossRefGoogle Scholar
  104. Woods DC, Tilly JL (2015) Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med 33:410–421.  https://doi.org/10.1055/s-0035-1567826 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wu S et al (2018) Polymer functionalization of isolated mitochondria for cellular transplantation and metabolic phenotype alteration. Adv Sci 5:1700530.  https://doi.org/10.1002/advs.201700530 CrossRefGoogle Scholar
  106. You J et al (2017) Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. Acta Physiol 220:58–71CrossRefGoogle Scholar
  107. Zhang HY, Lu NH, Xie Y, Guo GH, Zhan JH, Chen J (2008) Influence of heat shock preconditioning on structure and function of mitochondria in gastric mucosa of severely burned animals: experiment with rats. Zhonghua Yi Xue Za Zhi 88:564–567PubMedGoogle Scholar
  108. Zhang C, Montooth KL, Calvi BR (2017) Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 144:2490–2503.  https://doi.org/10.1242/dev.151951 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zussman B, Weiner G, Ducruet A (2017) Mitochondrial transfer into the cerebrospinal fluid in the setting of subarachnoid hemorrhage. Neurosurgery 82:N11–N13CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Amaneh Mohammadi Roushandeh
    • 1
  • Yoshikazu Kuwahara
    • 2
  • Mehryar Habibi Roudkenar
    • 3
    • 4
    Email author
  1. 1.Medical Biotechnology Department, Paramedicine FacultyGuilan University of Medical SciencesRashtIran
  2. 2.Divisions of Radiation Biology and Medicine, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
  3. 3.Department of Cardiology, Cardiovascular Disease Research Center, Heshmat Hospital, School of MedicineGuilan University of Medical SciencesRashtIran
  4. 4.Stem Cell and Regenerative Medicine Research CenterGuilan University of Medical SciencesRashtIran

Personalised recommendations