, Volume 71, Issue 2, pp 521–537 | Cite as

Stichopus chloronotus aqueous extract as a chondroprotective agent for human chondrocytes isolated from osteoarthitis articular cartilage in vitro

  • Mohd Yunus Mohd HeikalEmail author
  • Shuid Ahmad Nazrun
  • Kien Hui Chua
  • Abd Ghafar Norzana
Original Article


The proinflammatory cytokines, metalloproteinases family (MMPs), inflammatory mediators PGE2, COX-2 and NO are the most important group of compounds responsible for the loss of metabolic homeostasis of articular cartilage by promoting catabolic and destructive processes in the pathogenesis of osteoarthritis (OA). Stichopus chloronotus, a marine sea cucumber which is rich in n-3 PUFAs and phenolic compound, may exert a favorable influence on the course of the disease. The objective of this study was to investigate the regeneration and anti-inflammatory potential of S. chloronotus aqueous extract (SCAE) on human OA articular chondrocytes (HOC). Methods: The HOC isolated from knee joint cartilage removed during surgery were cultured with SCAE for 7 days. The effect of SCAE on anabolic and catabolic gene expression was verified by real-time PCR. Monolayer chondrocytes were stained with toluidine blue whereas sGAG, NO and PGE2 production in medium were analyzed by ELISA. Results: The HOC cultured in various SCAE have polygonal morphology maintaining their chondrocytes characteristic. SAE supplementation tested was found to be effective pro-chondrogenic, anti-inflammatory and anti-oxidative agents, as evidenced by upregulation of cartilage specific markers collagen type II, aggrecan core protein and sox-9 expression and downregulation of collagen type 1, IL-1, IL-6, IL-8, MMP-1, MMP-3, MMP-13, COX-2, iNOS and PAR-2 expression. The presence of SCAE in the culture was able to increase sGAG and reduce NO and PGE2 production significantly. Conclusions: These results suggested that SCAE demonstrated chondroprotective ability by suppressing catabolic activities, oxidative damage and effectively promoting chondrocytes growth.


Human osteoarthritic articular chondrocytes Stichopus chloronotus Pro-chondrogenic Anti-inflammatory 



We thank the ethical committee for proposal approval and science officers in Tissue Engineering Centre at Universiti Kebangsaan Malaysia Medical Centre for technical assistance and expertise.

Authors’ contribution

We declare that all authors listed contributed to the acquisition of data, drafting, critical revision and final approval of this manuscripts. Prof. Dr. Ahmad Nazrun Shuid and Dr. Chua Kien Hui conceived of the study and designed research. Dr. Mohd Heikal Mohd Yunus and Dr. Norzana Abd Gafar analyzed data. Dr. Mohd. Heikal Mohd Yunus performed research. Prof. Dr. Ahmad Nazrun Shuid and Dr. Chua Kien Hui helped coordinate the study. Dr. Mohd Heikal bin Mohd Yunus wrote the paper. All authors read and approved the final manuscript. Dr. Mohd Heikal bin Mohd Yunus takes the integrity of this work.


This study was made possible with financial support from Universiti Kebangsaan Malaysia (GUP-2013-23) and Ministry of Education Malaysia (ERGS/1/2012/SKK03/UKM/02/1).

Compliance with ethical standards

Competing interest

The authors declare that they have no competing interest.

Ethics approval

Prior ethical approval was obtained from the Research and Ethical Committee of Faculty of Medicine, Universiti Kebangsaan Malaysia (FF-2015-235).

Informed consent

All the human study subjects provided informed consent.


  1. Abramson SB (2008) Osteoarthritis and nitric oxide. Osteoarthr Cartil 16(Suppl 2):S15–S20CrossRefPubMedGoogle Scholar
  2. Akhtar N, Miller MJS, Haqqi TM (2011) Effect of a herbal-leucine mix on the IL-1b induced cartilage degradation and inflammatory gene expression in human chondrocytes. BMC Complement Altern Med 11:66CrossRefPubMedPubMedCentralGoogle Scholar
  3. Althunibat OY, Ridzwan BH, Taher M, Jamaludin MD, Ikeda MA, Zali BI (2009) In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. Eur J Sci Res 37:376–387Google Scholar
  4. Amin AR, Attur M, Patel RN (1997) Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. J Clin Invest 99(6):1231–1237CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boileau C, Amiable N, Pelletier JM, Fahmi H, Duval N, Pelletier JP (2007) Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study. Arthritis Res Ther 9:R121CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cardile V, Panico A, Gentile B, Borrelli F, Russo A (2003) Effect of propolis on human cartilage and chondrocytes. Life Sci 73(8):1027–1035CrossRefPubMedGoogle Scholar
  7. Cucchiarini M, Girolamo LD, Filardo G, Oliveira JM, Orth P, Pape D, Reboul P (2016) Basic science of osteoarthritis. J Exp Orthop 3(1):22CrossRefPubMedPubMedCentralGoogle Scholar
  8. Curtis CL, Harwood JL, Dent CM, Caterson B (2004) Biological basis for the benefit of nutraceutical supplementation in arthritis. Drug Discov Today 9(4):165–172CrossRefPubMedGoogle Scholar
  9. Dai L, Zhang X, Hu X et al (2012) Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther 14(6):R268CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dodge GR, Jimenez SA (2003) Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthr Cartil 11(6):424–432CrossRefPubMedGoogle Scholar
  11. Dozin B, Malpeli M, Camardella L, Cancedda R, Pietrangeloet A (2002) Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol 21(5):449–459CrossRefPubMedGoogle Scholar
  12. Forbes R, IIias Z, Baine M, Choo PS, Wallbank A (1999) A taxonomic key and field guide to the sea cucumbers of Malaysia. Heriot -Watt University, EdinburghGoogle Scholar
  13. Fredalina BD, Ridzwan BH, Abidin AA, Kaswandi MA, Zaiton H, Zali I, Kittakoop P, Jais AM (1999) Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. Gen Pharmacol 33(4):337–340CrossRefPubMedGoogle Scholar
  14. Goldring MB, Otero M (2014) Inflammation in osteoarthritis. Curr Opin Rheumatol 23(5):471–478CrossRefGoogle Scholar
  15. Hajjaji H, Marcelus A, Devogelaer JP, Manicourt DH (2003) Celecoxib has a positive effect on the overall metabolism of hyaluronan and proteoglycans in human osteoarthritic cartilage. J Rheumatol 30:2444–2451PubMedGoogle Scholar
  16. Hardy MM, Seibert K, Manning PT (2002) Cyclooxygenase2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46(7):1789–1803CrossRefPubMedGoogle Scholar
  17. Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15(11):375CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hsieh-Bonassera ND, Wu I, Lin JK, Schumacher BL, Chen AC, Masuda K, Bugbee WD, Sah RL (2009) Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng Part A 15(11):3513–3523CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hurst S, Zainal Z, Caterson B, Hughes CE, Harwood JL (2010) Dietary fatty acids and arthritis. Prostaglandins Leukot Essent Fatty Acids 82:315–318CrossRefPubMedGoogle Scholar
  20. Janakiram NB, Mohammed A, Rao CV (2015) Sea cucumbers metabolites as potent anti-cancer agents. Mar Drugs 13:2909–2923CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. Int J Rheumatol 2011:969012CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jiménez G, López-Ruiz E, Kwiatkowski W, Montañez E, Arrebola F, Carrillo E, Gray PC, Izpisua Belmonte JC, Choe S, Perán M, Marchal JA (2015) Activin A/BMP2 chimera AB235 drives efficient redifferentiation of long term cultured autologous chondrocytes. Sci Rep 5:16400CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42CrossRefGoogle Scholar
  24. Knott L, Avery NC, Hollander AP, Tarlton JF (2011) Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease. Osteoarthr Cartil 19:1150–1157CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lee AS, Ellman MB, Yan DY, Kroin JS, Cole BJ, Van Wijnen AJ, Im HJ (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527(2):440–447CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu Q, Hu X, Zhang X, Duan X, Yang P, Zhao F, Ao Y (2016) Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep 6:37268CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maldonado M, Nam J (2013) The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int 2013:1–10CrossRefGoogle Scholar
  28. Mazliadiyana M, Nazrun AS, Isa NM (2017) Optimum dose of sea cucumber (Stichopus chloronotus) extract for wound healing. Med Health 12(1):83–89CrossRefGoogle Scholar
  29. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BHI (2010) Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell 42(5):282–292CrossRefPubMedGoogle Scholar
  30. Otero M, Favero M, Dragomir C, Hachem KE, Hashimoto K, Plumb DA, Goldring MB (2012) Human chondrocyte cultures as models of cartilage-specific gene regulation. Methods Mol Biol 806:301–336CrossRefPubMedGoogle Scholar
  31. Ridzwan BH (2011) Timun Laut Warisan Malaysia. Research Management Centre, International Islamic University Malaysia, Kuala LumpurGoogle Scholar
  32. Shimpo H, Sakai T, Kondo S, Mishima S, Yoda M, Hiraiwa H, Ishiguro N (2009) Regulation of prostaglandin E2 synthesis in cells derived from chondrocytes of patients with osteoarthritis. J Orthop Sci 14(5):611–617CrossRefPubMedGoogle Scholar
  33. Sun L, Wang X, Kaplan DL (2011) A 3D cartilage-Inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials 32:5581–5589CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tsuchida AI, Beekhuizen M, Rutgers M, van Osch GJ, Bekkers JE, Bot AG, Geurts B, Dhert WJ, Saris DB, Creemers LB (2014) Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res Ther 16:441CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang P, Zhu F, Konstantopoulos K (2011) Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-D12,14-PGJ2. PLoS ONE 6(11):e27630CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wann AKT, Mistry J, Blain EJ, Michael-Titus AT, Knight MM (2010) Eicosapentaenoic acid and docosahexaenoicacid reduce interleukin-1b-mediated cartilage degradation. Arthritis Res Ther 12:R207CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yin J, Yang Z, Cao YP, Ge ZG (2011) Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity. Chin Med J 124(24):4245–4253PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mohd Yunus Mohd Heikal
    • 1
    • 4
    Email author
  • Shuid Ahmad Nazrun
    • 2
  • Kien Hui Chua
    • 1
  • Abd Ghafar Norzana
    • 3
  1. 1.Department of PhysiologyUniversiti Kebangsaan Malaysia Medical CentreCheras, Kuala LumpurMalaysia
  2. 2.Department of PharmacologyUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  3. 3.Department of AnatomyUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  4. 4.Tissue Engineering CentreUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia

Personalised recommendations