Advertisement

Cytotechnology

, Volume 70, Issue 4, pp 1261–1278 | Cite as

In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes

  • K. Jurica
  • I. Brčić Karačonji
  • A. Mikolić
  • D. Milojković-Opsenica
  • V. Benković
  • N. Kopjar
Article

Abstract

Strawberry tree (Arbutus unedo L.) leaves have long been used in the traditional medicine of the Mediterranean region. One of their most bioactive constituents is the glycoside arbutin, whose presence makes A. unedo suitable as a potential substitute for bearberry [Arctostaphylos uva ursi (L.) Spreng] leaves, an herbal preparation widely used for treating urinary tract infections. The safety and biocompatibility of strawberry tree water leaf extract have not yet been documented well. This study estimated arbutin content in strawberry tree water leaf extract (STE) using high performance liquid chromatography. Furthermore, we performed an in vitro safety assessment of the 24 h exposure to three presumably non-toxic concentrations of standardized STE and arbutin in human peripheral blood lymphocytes using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus cytome assay. The STE was also tested for total antioxidant capacity and lipid peroxidation. At a concentration corresponding to the maximum allowable daily intake of arbutin, the tested extract was not cytotoxic, had a negligible potential for causing primary DNA damage and even hindered micronuclei formation in lymphocytes. It also showed a valuable antioxidant capacity, and did not exert marked lipid peroxidation. These promising results represent a solid frame for further development of STE-based herbal preparations. Although arbutin generally had a low DNA damaging potential, the slowing down of lymphocyte proliferation observed after 24 h of exposure points to a cytostatic effect, which merits further research.

Keywords

Apoptosis Arbutus unedo L. Cytokinesis-block micronucleus “cytome” assay Oxidative stress Primary DNA damage 

Notes

Acknowledgements

This study was financially supported by the Mali Lošinj Tourist Board and Institutional funding provided by the Ministry of Science and Education of the Republic of Croatia.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Aydin S, Tokaç D, Başaran N, Başaran AA (2015) Effect of epigallocatechin gallate on oxidative DNA damage in human lymphocytes. Turk J Pharm Sci 12:19–28Google Scholar
  2. Azmi AS, Bhat SH, Hanif S, Hadi SM (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 580:533–538CrossRefPubMedGoogle Scholar
  3. Azqueta A, Collins A (2016) Polyphenols and DNA damage: a mixed blessing. Nutrients 8:785.  https://doi.org/10.3390/nu8120785 CrossRefPubMedCentralGoogle Scholar
  4. Azqueta A, Slyskova J, Langie SA, O’Neill Gaivão I, Collins A (2014) Comet assay to measure DNA repair: approach and applications. Front Genet 5:288CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benković V, Kopjar N, Horvat Knežević A, Đikić D, Bašić I, Ramić S, Viculin T, Knežević F, Oršolić N (2008) Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol Pharm Bull 31:1778–1785CrossRefPubMedGoogle Scholar
  6. Benković V, Knežević AH, Oršolić N, Bašić I, Ramić S, Viculin T, Knežević F, Kopjar N (2009) Evaluation of radioprotective effects of propolis and its flavonoid constituents: in vitro study on human white blood cells. Phytother Res 23:1159–1168CrossRefPubMedGoogle Scholar
  7. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefPubMedGoogle Scholar
  8. Blaut M, Braune A, Wunderlich S, Sauer P, Schneider H, Glatt H (2006) Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Food Chem Toxicol 44:1940–1947CrossRefPubMedGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive assay for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  10. Branica G, Mladinić M, Omanović D, Želježić D (2016) An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests. Arh Hig Rada Toksikol 67:277–288CrossRefPubMedGoogle Scholar
  11. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261CrossRefPubMedGoogle Scholar
  12. DeCaprio AP (1999) The toxicology of hydroquinone-relevance to occupational and environmental exposure. Crit Rev Toxicol 29:283–330CrossRefPubMedGoogle Scholar
  13. Dong Q, Zhang CJ, Zhou HB, Zou ZX, Yang GD (2005) The study of arbutin against the damage caused by a H2O2 in ECV-304 cells. J Harbin Med Univ 2:142–144.  https://doi.org/10.3969/j.issn.1000-1905.2005.02.013 CrossRefGoogle Scholar
  14. Duke RC, Cohen JJ (1992) Morphological and biochemical assays of apoptosis. In: Coligan JE, Kruisbeal AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Willey, New York, pp 3.17.1–3.17.16Google Scholar
  15. Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an anti-kinetochore antibody. Environ Mol Mutagen 13:34–43CrossRefPubMedGoogle Scholar
  16. European Medicines Agency (2012) Assessment report on Arctostaphylos uva-ursi (L.) Spreng., folium. http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2011/07/WC500108750.pdf. Accessed 21 Mar 2018
  17. Farhan M, Zafar A, Chibber S, Khan HY, Arif H, Hadi SM (2015) Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: a structure activity study. Arch Biochem Biophys 580:31–40CrossRefPubMedGoogle Scholar
  18. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefPubMedGoogle Scholar
  19. Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600:58–66CrossRefPubMedGoogle Scholar
  20. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36CrossRefPubMedGoogle Scholar
  21. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) Human MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75CrossRefPubMedGoogle Scholar
  22. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132CrossRefPubMedGoogle Scholar
  23. Fiorentino A, Castaldi S, D’Abrosca B, Natale A, Carfora A, Messere A, Monaco P (2007) Polyphenols from the hydroalcoholic extract of Arbutus unedo living in a monospecific Mediterranean woodland. Biochem Syst Ecol 35:809–811CrossRefGoogle Scholar
  24. Garcia de Arriba S, Naser B, Nolte KU (2013) Risk assessment of free hidroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int J Toxicol 32:442–456CrossRefGoogle Scholar
  25. Gašić U, Jurica K, Brčić Karačonji I, Milojković Opsenica D (2015) Phytochemical fingerprint of the strawberry tree. In Todorović T, Opsenica I, Dekanski A (eds) Book of abstracts/third conference of young chemists of Serbia, Belgrade, Serbia. Serbian Chemical Society, Belgrade, Serbia, pp 11–11. ISBN: 978-86-7132-059-7Google Scholar
  26. Gasiorowski K, Brokos B, Kulma A, Ogorzałek A, Skórkowska K (2001) A comparison of the methods applied to detect apoptosis in genotoxically-damaged lymphocytes cultured in the presence of four antimutagens. Cell Mol Biol Lett 6:141–159PubMedGoogle Scholar
  27. Gillbro JM, Olsson MJ (2011) The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches. Int J Cosmet Sci 33:210–221CrossRefPubMedGoogle Scholar
  28. Grace Nirmala J, Evangeline Celsia S, Swaminathan A, Narendhirakannan RT, Chatterjee S (2018) Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology 70:537–554CrossRefPubMedGoogle Scholar
  29. Hadi SM, Asad SF, Singh S, Ahmad A (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167–171CrossRefPubMedGoogle Scholar
  30. Hertzog DI, Tica OA (2012) Molecular mechanisms underlying the anti-cancerous action of flavonoids. Curr Health Sci J 38:145–149Google Scholar
  31. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y (1994) Antioxidant, gallic acid induces apoptosis in HL60 R cells. Biochem Biophys Res Commun 204:898–904CrossRefPubMedGoogle Scholar
  32. Jurica K (2016) Phenolic compounds in strawberry tree (Arbutus unedo L.) and their biological effect. Doctoral thesis, Faculty of Science, University of Zagreb, Croatia, 161 ppGoogle Scholar
  33. Jurica K, Brčić Karačonji I, Šegan S, Milojković Opsenica D, Kremer D (2015) Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry. Arh Hig Rada Toksikol 66:197–202CrossRefPubMedGoogle Scholar
  34. Jurica K, Gobin I, Kremer D, Vitali Čepo D, Jurišić Grubešić R, Brčić Karačonji I, Kosalec I (2017) Arbutin and its metabolyte hydroquinone as main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J Herb Med 8:17–23CrossRefGoogle Scholar
  35. Kopjar N, Želježić D, Kosalec I, Bakmaz M, Jug M (2007) Cytoprotectivity of plant extracts on doxorubicin and irinotecan-treated human peripheral blood lymphocytes. Planta Med 73:P_507CrossRefGoogle Scholar
  36. Kozics K, Klusová V, Srančíková A, Mučaji P, Slamenová D, Hunáková L, Kusznierewicz B, Horváthová E (2013) Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem 141:2198–2206CrossRefPubMedGoogle Scholar
  37. Langie SAS, Azqueta A, Collins AR (2015) The comet assay: past, present, and future. Front Genet 6:266CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee HJ, Kim KW (2012) Anti-inflammatory effects of arbutin in lipopoly-saccharide-stimulated BV2 microglial cells. Inflamm Res 61:817–825CrossRefPubMedGoogle Scholar
  39. Li H, Jeong YM, Kim SY, Kim MK, Kim DS (2011) Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21. Pharmazie 66:306–309PubMedGoogle Scholar
  40. Mohamed AM, Cangiano MA, Alcaráz LE, Satorres SE, Laciar AL, Mattana CM (2016) Comet assay application in evaluation the safe use of medicinal plants. Emir J Food Agric 28:737–740CrossRefGoogle Scholar
  41. Nawarak J, Huang-Liu R, Kao SH, Liao HH, Sinchaikul S, Chen ST, Cheng SL (2009) Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment. Biochim Biophys Acta 1794:159–167CrossRefPubMedGoogle Scholar
  42. Novak Jovanović I, Miličević A (2017) A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups. Arh Hig Rada Toksikol 68:93–98CrossRefPubMedGoogle Scholar
  43. NTP—National Toxicology Program (2006) Chemical information review document for arbutin [CAS No. 497-76-7] and extracts from Arctostaphylos uva-ursi. Natl Toxicol Progr pp 1–38. https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/arbutin_508.pdf. Accessed 1 Oct 2017
  44. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  45. Olive PL (1999) DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 75:395–405CrossRefPubMedGoogle Scholar
  46. Oliveira I, Baptista P, Bento A, Pereira JA (2011) Arbutus unedo L. and its benefits on human health. J Food Nutr Res 50:73–85Google Scholar
  47. Pareek A, Godavarthi A, Issarani R, Nagori BP (2013) Antioxidant and hepatoprotective activity of Fagonia schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in HepG2 cell line and rats. J Ethnopharmacol 150:973–981CrossRefPubMedGoogle Scholar
  48. Pavlović RD, Lakušić B, Došlov-Kokoruš Z, Kovačević N (2009) Arbutin content and antioxidant activity of some Ericaceae species. Pharmazie 64:656–659PubMedGoogle Scholar
  49. Pavlović DR, Branković S, Kovačević N, Kitić D, Veljković S (2011) Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece. Phytother Res 25:749–754CrossRefPubMedGoogle Scholar
  50. Pečivová J, Nosál R, Sviteková K, Mačičková T (2014) Arbutin and decrease of potentially toxic substances generated in human blood neutrophils. Interdiscip Toxicol 7:195–200CrossRefGoogle Scholar
  51. Petrović S, Vasić V, Mitrović T, Lazović S, Leskovac A (2017) The impact of concentration and administration time on the radiomodulating properties of undecylprodigiosin in vitro. Arh Hig Rada Toksikol 68:1–8CrossRefPubMedGoogle Scholar
  52. Piao MJ, Kang KA, Zhang R, Ko DO, Wang ZH, You HJ, Kim HS, Kim JS, Kang SS, Hyun JW (2008) Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim Biophys Acta 1780:1448–1457CrossRefPubMedGoogle Scholar
  53. Prasad NR, Jeyanthimala K, Ramachandran S (2009) Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J Photochem Photobiol, B 95:196–203CrossRefGoogle Scholar
  54. Qari SH, El-Assouli SM (2017) Evaluation of cytological and genetic effects of Tribulus terrestris fruit aqueous extract on cultured human lymphocytes. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2017.01.012 CrossRefPubMedGoogle Scholar
  55. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534CrossRefPubMedGoogle Scholar
  56. Rhouma GB, Chebil L, Mustapha N, Krifa M, Ghedira K, Ghoul M, Chékir-Ghédira L (2013) Cytotoxic, genotoxic and antigenotoxic potencies of oligorutins. Hum Exp Toxicol 32:881–889CrossRefPubMedGoogle Scholar
  57. Rojas E, Lopez MC, Valverde M (1999) Single cell gel electrophoresis assay: methodology and applications. J Chromatogr B Biomed Sci Appl 722:225–254CrossRefPubMedGoogle Scholar
  58. Rusak G, Piantanida I, Masić L, Kapuralin K, Durgo K, Kopjar N (2010) Spectrophotometric analysis of flavonoid-DNA interactions and DNA damaging/protecting and cytotoxic potential of flavonoids in human peripheral blood lymphocytes. Chem Biol Interact 188:181–189CrossRefPubMedGoogle Scholar
  59. Sak K, Everaus H (2015) Multi-target cytotoxic actions of flavonoids in blood cancer cells. Asian Pac J Cancer Prev 16:4843–4847CrossRefPubMedGoogle Scholar
  60. Schindler G, Patzak U, Brinkhaus B, von Nieciecki A, Wittig J, Krähmer N, Glöckl I, Veit M (2002) Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uvae ursi extract as film-coated tablets. J Clin Pharmacol 42:920–927CrossRefPubMedGoogle Scholar
  61. Seyfizadeh N, Mahjoub S, Zabihi E, Moghadamnia A, Pouramir M, Mir H, Khosravifarsani M, Elahimanesh F (2012) Cytoprotective effects of arbutin against tert-butyl hydroperoxide induced toxicity in Hep-G2 cell line. World Appl Sci J 19:163–167Google Scholar
  62. Siegelin MD, Reuss DE, Habel A, Herold-Mende C, von Deimling A (2008) The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol Cancer Ther 7:3566–3574CrossRefPubMedGoogle Scholar
  63. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefPubMedGoogle Scholar
  64. Sreejaya SB, Archana D, Santhy KS (2017) Genoprotective effects of Acorus calamus rhizome against DNA damage in peripheral blood lymphocytes. Int J Green Pharm Suppl 11:S108–S111Google Scholar
  65. Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A (2010) Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems. Free Radic Res 44:473–478CrossRefPubMedGoogle Scholar
  66. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefPubMedGoogle Scholar
  67. Turkez H, Aydın E, Geyikoglu F, Cetin D (2015) Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. Cytotechnology 67:409–418CrossRefPubMedGoogle Scholar
  68. Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón S, Milić M, Olivares JLG, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016a) Assessment of genotoxicity of Lannate-90® and its plant and animal metabolites in human lymphocyte cultures. Arh Hig Rada Toksikol 67:116–125CrossRefPubMedGoogle Scholar
  69. Valencia-Quintana R, Gómez-Arroyo S, Sánchez-Alarcón S, Milić M, Olivares JLG, Waliszewski SM, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME (2016b) Genotoxic effects of the carbamate insecticide Pirimor-50® in Vicia faba root tip meristems and human lymphocyte culture after direct application and treatment with its metabolic extracts. Arh Hig Rada Toksikol 67:266–276CrossRefPubMedGoogle Scholar
  70. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35:1517–1525CrossRefPubMedGoogle Scholar
  71. Wu LH, Li P, Zhao QL, Piao JL, Jiao YF, Kadowaki M, Kondo T (2014) Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 19:1654–1663CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ministry of the InteriorZagrebCroatia
  2. 2.Institute for Medical Research and Occupational HealthZagrebCroatia
  3. 3.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations