Skip to main content
Log in

Enhancement of monoclonal antibody production in CHO cells by exposure to He–Ne laser radiation

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study tested the effectiveness of laser biostimulation in small-scale cultures in vitro. We investigated the response of recombinant CHO cells, which are used for the production of monoclonal antibody, to low level laser radiation. The cells were irradiated using a 632.8 nm He–Ne laser in a continuous wave mode at different energy doses. We incubated the irradiated cells in small batch cultures and assessed their proliferation and productivity at various time intervals. Compared to untreated cells, the irradiated cells showed a significant increase in antibody production. Moreover, the results showed that laser irradiation did not affect viability and slightly enhanced proliferation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Watban FAH , Andres BL (2012) Laser biomodulation of normal and neoplastic cells. Lasers Med Sci 27(5):1039–1043

    Google Scholar 

  • Benedicenti S, Pepe IM, Angiero F, Benedicenti A (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26:451–453

    Article  CAS  Google Scholar 

  • Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: Oomycete effectors enter host plant cells. Trends Microbiol 14:8–11

    Google Scholar 

  • Calatrava R, Valenzuela JMS, Gomez-Villamandos RJ, Redondo JI, Gomez-Villamandos JC, Jurado IA (1997) Histological and clinical responses of articular cartilage to low-level laser therapy: experimental study. Lasers Med Sci 12:117–121

    Article  Google Scholar 

  • Chan HHL, Xiang L, Leung JCK, Tsang KWT, Lai K (2003) In vitro study examining the effect of sub-lethal QS 755 nm lasers on the expression of p16INK4a on melanoma cell lines. Lasers Surg Med 32:88–93

    Article  Google Scholar 

  • Chen K, Liu Q, Xie L, Sharp PA, Wang DIC (2001) Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnol Bioeng 72:55–61

    Article  CAS  Google Scholar 

  • Eells JT, Wong-Riley MTT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567

    Google Scholar 

  • Feng L, Joe XZ, Xiaoming Y, Tim T, Brian L (2005) Current theurapeutic antibody production and process optimization. Bioprocess J :1–8

  • Fonseca AS, Geller M, Filho MB, Valença SS, Paoli FD (2012) Low-level infrared laser effect on plasmid DNA. Lasers Med Sci 27:121–130

    Article  Google Scholar 

  • Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  Google Scholar 

  • Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376

    Article  Google Scholar 

  • Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28:1376–1389

    Article  CAS  Google Scholar 

  • Gorfien SF, Jayme DW (2011) Development and optimization of serum- and protein-free culture media. In: Davis JM (ed) Animal Cell Culture: Essential Methods. Wiley, Chichester, UK. pp 153–184 doi:10.1002/9780470669815.ch5

  • Havel M, Sroka R, Englert E, Stelter K, Leunig A, Betz CS (2012) Intraindividual comparison of 1,470 nm diode laser versus carbon dioxide laser for tonsillotomy: a prospective, randomized, double blind, controlled feasibility trial. Lasers Surg Med 44:558–563

    Article  Google Scholar 

  • Ito K, Senda N, Sugano N, Moriya Y, Nanba K, Hirano Y, Murai S (2000) Inhibitory effect of yellow He-Ne laser irradiation mediated by crystal violet solution on early plaque formation in human mouth. Lasers Med Sci 15:174–180

    Article  Google Scholar 

  • Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near IR radiation. Photochem Photobiol 84:1091–1099

    Article  CAS  Google Scholar 

  • Karu TI (2010) multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62:607–610

    Article  CAS  Google Scholar 

  • Karu TI, Pyatibra LV, Kalendo GS (2001) Cell attachment modulation by radiation from a pulsed light diode (k.820 nm) and various chemicals. Lasers Surg Med 28:227–236

    Article  CAS  Google Scholar 

  • Khoo SHG, Al-Rubeai M (2009) Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab Eng 11:199–211

    Article  CAS  Google Scholar 

  • Kirkby KA, Freeman DE, Morton AJ, Ellison GW, Alleman AR, Borsa PA, Reinhard MK, Robertson SA (2012) The effects of low-level laser therapy in a rat model of intestinal Ischemia–Reperfusion injury. Lasers Surg Med 44:580–587

    Article  Google Scholar 

  • Koutna M, Janisch R, Veselska R (2003) Effects of Low-Power Laser Irradiation on Cell Proliferation. Scripta Medica (Brno) 76(3):163–172

    Google Scholar 

  • Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30:353–358

    Article  Google Scholar 

  • Kuystermans D, Al-Rubeai M (2011) Bioreactor systems for the production of antibody from mammalian cells in: antibody expression and production. Cell Eng 7:25–52

    Article  Google Scholar 

  • Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M (2007) Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnology 53:3–22

    Article  Google Scholar 

  • Lapotko DO, Lukianova E, Oraevsky AA (2006) Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg Med 38(6):631–642

    Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Google Scholar 

  • Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Google Scholar 

  • Marchesini R, Dasdia T, Melloni E, Rocca E (1989) Effect of low-energy laser irradiation on colony formation capability in different human tumor cells in vitro. Lasers Surg Med 9:59–62

    Article  CAS  Google Scholar 

  • Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12

    Article  Google Scholar 

  • Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM (1998a) Effect of Helium-Neon (He-Ne) laser irradiation on dog neoplasm cells in culture. Lasers Med Sci 13:143–147

    Article  Google Scholar 

  • Ocaña-Quero JM, Perez de la Lastra J, Gomez-Villamandos R, Moreno-Millan M (1998b) Biological effect of Helium-Neon (He-Ne) laser irradiation on mouse myeloma (Sp2-Ag14) cell line in vitro. Lasers Med Sci 13:214–218

    Article  Google Scholar 

  • Ozog D, Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS (2012) Clinical and molecular effects on mature burn scars after treatment with a fractional CO2 laser. Lasers Surg Med 44:517–524

    Article  Google Scholar 

  • Prusa AM, Plass CA, Wieselthaler GM, Podesser PK (2012) Low-Level-Laser irradiation induces photorelaxation in coronary arteries and overcomes vasospasm of internal thoracic arteries. Lasers Surg Med 44:705–711

    Article  Google Scholar 

  • Shu-Zheng L (2007) Cancer control related to stimulation of immunity by low-dose radiation. Dose-response 5:39–47

    Article  Google Scholar 

  • Wheeland RG (2012) Permanent hair reduction with a home-use diode laser: safety and effectiveness 1 year after eight treatments. Lasers Surg Med 44:550–557

    Article  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Wurm FM (2005) The industry’s workhorses-mammalian expression systems. In: Knablein J (ed) Modern Biopharmaceuticals, vol 3. Wiley-VCH Weiheim, pp 723–759

  • Xie L, Wang DIC (1994) Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng 43:1175–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was partially sponsored by the Ministry of Higher Education and Scientific Research, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaleb, R., Naciri, M., Al-Majmaie, R. et al. Enhancement of monoclonal antibody production in CHO cells by exposure to He–Ne laser radiation. Cytotechnology 66, 761–767 (2014). https://doi.org/10.1007/s10616-013-9625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9625-8

Keywords

Navigation