# Multiple Shooting Method for Solving Black–Scholes Equation

Article

## Abstract

In this paper, the Black–Scholes (B–S) model for the pricing of the European and the barrier call options are considered, which yields a partial differential problem. First, A numerical technique based on Crank–Nicolson (C–N) method is used to discretisize the time domain. Consequently, the partial differential equation will be converted to a system of an ordinary differential equation (ODE). Then, the multiple shooting method combined with Lagrange polynomials is utilized to solve the ODEs. Regarding the convergence order of the approximate solution which normally decreases due to the non-smooth properties of the option’s payoff (at the strike price), in this study, the equipped C–N scheme with variable step size strategy is applied for the time discretization. As a result, the variable step size strategy prevents the error propagation by controlling the error at each time step and increases the computational speed by raising the step size in the smooth points of the domain. In order to implement the variable step size, an algorithm is presented. In addition, the stability of the presented method is analyzed. The extracted numerical results represent the accuracy and efficiency of the proposed method.

## Keywords

Black–Scholes equation Multiple shooting method Crank–Nicolson method Option pricing Variable step size

## References

1. Abdi, A., Hojjati, G., Jackiewicz, Z., & Mahdi, H. (2019). A new code for Volterra integral equations based on natural Runge–Kutta methods. Applied Numerical Mathematics, 143, 35–50.
2. Baltensperger, R., & Berrut, J. P. (1999). The errors in calculating the pseudospectral differentiation matrices for Chebyshev–Gauss–Lobatto point. Computers and Mathematics with Applications, 37, 41–48.
3. Bastani, A., Ahmadi, Z., & Damircheli, D. (2013). A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Applied Numerical Mathematics, 65, 79–90.
4. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.
5. Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral method in fluid dynamics. Berlin: Springer.
6. Carbonell, F., Iturria-Medina, Y., & Jimenez, J. C. (2016). Multiple shooting-local linearization method for the identification of dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 37, 292–304.
7. Chang, J. R., Liu, C. S., & Chang, C. W. (2007). A new shooting method for quasi-boundary regularization of backward heat conduction problems. International Journal of Heat and Mass Transfer, 50, 2325–2332.
8. Chebyshev, P. (1859). Sur les questions de minima qui se rattachent a la representation approximative des fonctions. Mm. Acad. Imp. Sci. St.-Petersbg., 7, 199–291.Google Scholar
9. Dueias, E., England, R., & Lopez-Estrada, J. (1999). Multiple shooting with dichotomically stable formulae for linear boundary-value problems. Computers and Mathematics with Applications, 38, 143–159.Google Scholar
10. Farnoosh, R., Sobhani, A., & Beheshti, M. H. (2017). Efficient and fast numerical method for pricing discrete double barrier option by projection method. Computers and Mathematics with Applications, 73, 1539–1545.
11. Farnoosh, R., Sobhani, A., Rezazadeh, H., & Beheshti, M. H. (2015). Numerical method for discrete double barrier option pricing with time-dependent parameters. Computers and Mathematics with Applications, 70, 2006–2013.
12. Giles, M., & Carter, R. (2006). Convergence analysis of Crank–Nicolson and Rannacher time marching. Journal of Computational Finance, 9, 89–112.
13. Golbabai, A., Ballestra, L. V., & Ahmadian, D. (2013). Superconvergence of the finite element solutions of the Black–Scholes equation. Finance Research Letters, 10, 17–26.
14. Haug, E. G. (2007). The complete guide to option pricing formulas. Hardcover.Google Scholar
15. Higham, D. J. (2004). An introduction to financial option valuation. Cambridge: Cambridge University Press.
16. Hull, J. C. (2000). Options, futures and other derivatives. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
17. in’t Hout, K. J., & Volders, K. (2009). Stability of central finite difference schemes on non-uniform grids for the Black–Scholes equation. Applied Numerical Mathematics, 59, 2593–2609.
18. Javidi, M. (2006). Spectral collocation method for the solution of the generalized Burger–Fisher equation. Applied Mathematics and Computation, 174, 345–352.
19. Javidi, M. (2011). A modified Chebyshev pseudospectral DD algorithm for the GBH equation. Computers and Mathematics with Applications, 62, 3366–3377.
20. Javidi, M., & Golbabai, A. (2009). A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning. Chaos, Solitons and Fractals, 39, 849–857.
21. Jiang, L. (2004). Mathematical modeling and methods of option pricing. Singapore: World Scientific, Tongji University.Google Scholar
22. Keller, H. B. (1976). Numerical solution of two point boundary value problems. Philadelphia: SIAM.
23. Khaliq, A. Q. M., Voss, D. A., & Kazmi, K. (2008). Adaptive $$\theta$$-methods for pricing American options. Journal of Computational and Applied Mathematics, 222, 210–227.
24. Lakestani, M., & Dehghan, M. (2012). Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Applied Mathematical Modelling, 36, 605–617.
25. Mahson, J. C., & Handscomb, D. C. (2003). Chebyshev polynomials. Chapman and Hall: CRC Press.Google Scholar
26. Markolefas, S. (2008). Standard Galerkin formulation with high order Lagrange finite elements for option markets pricing. Applied Mathematics and Computation, 195, 707–720.
27. Mohammadi, R. (2015). Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing. Computers and Mathematics with Applications, 69, 777–797.
28. Persson, J., & Sydow, L. V. (2010). Pricing American options using a space-time adaptive finite difference method. Mathematics and Computers in Simulation, 80, 1922–1935.
29. Phillips, G. M. (2003). Interpolation and approximation by polynomials. Berlin: Springer.
30. Rad, J. A., Parand, K., & Pallestra, L. V. (2015). Pricing European and American options by radial basis points interpolation. Applied Mathematics and Computation, 251, 363–377.
31. Rathish Kumar, B. V., & Mehra, M. (2005). A wavelet Taylor Galerkin method for parabolic and hyperbolic partial differential equations. International Journal of Computational Methods, 2(1), 75–97.
32. Riley, J. D., Morrison, D. D., & Zancanaro, J. F. (1962). Multiple shooting method for two-point boundary value problems. Communications of the ACM, 5, 613–614.
33. Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis (3rd ed.). Berlin: Springer.
34. Vaquero, J. M., Khaliq, A. Q. M., & Kleefeld, B. (2014). Stabilized explicit Runge–Kutta methods for multi-asset American options. Computers and Mathematics with Applications, 67, 1293–1308.
35. Wade, B. A., Khaliq, A. Q. M., Yousuf, M., Vigo-Aguiar, J., & Deininger, R. (2007). On smoothing of the Crank–Nicolson scheme and higher order schemes for pricing barrier options. Journal of Computational and Applied Mathematics, 204, 144–158.
36. Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing mathematical models and compuation. Oxford: Oxford Financial Press.Google Scholar
37. Zhang, W. (2012). Improved implementation of multiple shooting for BVPs. Computer Science Department, University of Toronto.Google Scholar

## Authors and Affiliations

• Somayeh Abdi-Mazraeh
• 1
• 2
• Ali Khani
• 1
• Safar Irandoust-Pakchin
• 2
1. 1.Department of SciencesAzarbaijan Shahid Madani UniversityTabrizIran
2. 2.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

## Personalised recommendations

### Citearticle 