Multiple Shooting Method for Solving Black–Scholes Equation

  • Somayeh Abdi-MazraehEmail author
  • Ali Khani
  • Safar Irandoust-Pakchin


In this paper, the Black–Scholes (B–S) model for the pricing of the European and the barrier call options are considered, which yields a partial differential problem. First, A numerical technique based on Crank–Nicolson (C–N) method is used to discretisize the time domain. Consequently, the partial differential equation will be converted to a system of an ordinary differential equation (ODE). Then, the multiple shooting method combined with Lagrange polynomials is utilized to solve the ODEs. Regarding the convergence order of the approximate solution which normally decreases due to the non-smooth properties of the option’s payoff (at the strike price), in this study, the equipped C–N scheme with variable step size strategy is applied for the time discretization. As a result, the variable step size strategy prevents the error propagation by controlling the error at each time step and increases the computational speed by raising the step size in the smooth points of the domain. In order to implement the variable step size, an algorithm is presented. In addition, the stability of the presented method is analyzed. The extracted numerical results represent the accuracy and efficiency of the proposed method.


Black–Scholes equation Multiple shooting method Crank–Nicolson method Option pricing Variable step size 



  1. Abdi, A., Hojjati, G., Jackiewicz, Z., & Mahdi, H. (2019). A new code for Volterra integral equations based on natural Runge–Kutta methods. Applied Numerical Mathematics, 143, 35–50.CrossRefGoogle Scholar
  2. Baltensperger, R., & Berrut, J. P. (1999). The errors in calculating the pseudospectral differentiation matrices for Chebyshev–Gauss–Lobatto point. Computers and Mathematics with Applications, 37, 41–48.CrossRefGoogle Scholar
  3. Bastani, A., Ahmadi, Z., & Damircheli, D. (2013). A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Applied Numerical Mathematics, 65, 79–90.CrossRefGoogle Scholar
  4. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.CrossRefGoogle Scholar
  5. Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (1988). Spectral method in fluid dynamics. Berlin: Springer.CrossRefGoogle Scholar
  6. Carbonell, F., Iturria-Medina, Y., & Jimenez, J. C. (2016). Multiple shooting-local linearization method for the identification of dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 37, 292–304.CrossRefGoogle Scholar
  7. Chang, J. R., Liu, C. S., & Chang, C. W. (2007). A new shooting method for quasi-boundary regularization of backward heat conduction problems. International Journal of Heat and Mass Transfer, 50, 2325–2332.CrossRefGoogle Scholar
  8. Chebyshev, P. (1859). Sur les questions de minima qui se rattachent a la representation approximative des fonctions. Mm. Acad. Imp. Sci. St.-Petersbg., 7, 199–291.Google Scholar
  9. Dueias, E., England, R., & Lopez-Estrada, J. (1999). Multiple shooting with dichotomically stable formulae for linear boundary-value problems. Computers and Mathematics with Applications, 38, 143–159.Google Scholar
  10. Farnoosh, R., Sobhani, A., & Beheshti, M. H. (2017). Efficient and fast numerical method for pricing discrete double barrier option by projection method. Computers and Mathematics with Applications, 73, 1539–1545.CrossRefGoogle Scholar
  11. Farnoosh, R., Sobhani, A., Rezazadeh, H., & Beheshti, M. H. (2015). Numerical method for discrete double barrier option pricing with time-dependent parameters. Computers and Mathematics with Applications, 70, 2006–2013.CrossRefGoogle Scholar
  12. Giles, M., & Carter, R. (2006). Convergence analysis of Crank–Nicolson and Rannacher time marching. Journal of Computational Finance, 9, 89–112.CrossRefGoogle Scholar
  13. Golbabai, A., Ballestra, L. V., & Ahmadian, D. (2013). Superconvergence of the finite element solutions of the Black–Scholes equation. Finance Research Letters, 10, 17–26.CrossRefGoogle Scholar
  14. Haug, E. G. (2007). The complete guide to option pricing formulas. Hardcover.Google Scholar
  15. Higham, D. J. (2004). An introduction to financial option valuation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Hull, J. C. (2000). Options, futures and other derivatives. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  17. in’t Hout, K. J., & Volders, K. (2009). Stability of central finite difference schemes on non-uniform grids for the Black–Scholes equation. Applied Numerical Mathematics, 59, 2593–2609.CrossRefGoogle Scholar
  18. Javidi, M. (2006). Spectral collocation method for the solution of the generalized Burger–Fisher equation. Applied Mathematics and Computation, 174, 345–352.CrossRefGoogle Scholar
  19. Javidi, M. (2011). A modified Chebyshev pseudospectral DD algorithm for the GBH equation. Computers and Mathematics with Applications, 62, 3366–3377.CrossRefGoogle Scholar
  20. Javidi, M., & Golbabai, A. (2009). A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning. Chaos, Solitons and Fractals, 39, 849–857.CrossRefGoogle Scholar
  21. Jiang, L. (2004). Mathematical modeling and methods of option pricing. Singapore: World Scientific, Tongji University.Google Scholar
  22. Keller, H. B. (1976). Numerical solution of two point boundary value problems. Philadelphia: SIAM.CrossRefGoogle Scholar
  23. Khaliq, A. Q. M., Voss, D. A., & Kazmi, K. (2008). Adaptive \(\theta \)-methods for pricing American options. Journal of Computational and Applied Mathematics, 222, 210–227.CrossRefGoogle Scholar
  24. Lakestani, M., & Dehghan, M. (2012). Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Applied Mathematical Modelling, 36, 605–617.CrossRefGoogle Scholar
  25. Mahson, J. C., & Handscomb, D. C. (2003). Chebyshev polynomials. Chapman and Hall: CRC Press.Google Scholar
  26. Markolefas, S. (2008). Standard Galerkin formulation with high order Lagrange finite elements for option markets pricing. Applied Mathematics and Computation, 195, 707–720.CrossRefGoogle Scholar
  27. Mohammadi, R. (2015). Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing. Computers and Mathematics with Applications, 69, 777–797.CrossRefGoogle Scholar
  28. Persson, J., & Sydow, L. V. (2010). Pricing American options using a space-time adaptive finite difference method. Mathematics and Computers in Simulation, 80, 1922–1935.CrossRefGoogle Scholar
  29. Phillips, G. M. (2003). Interpolation and approximation by polynomials. Berlin: Springer.CrossRefGoogle Scholar
  30. Rad, J. A., Parand, K., & Pallestra, L. V. (2015). Pricing European and American options by radial basis points interpolation. Applied Mathematics and Computation, 251, 363–377.CrossRefGoogle Scholar
  31. Rathish Kumar, B. V., & Mehra, M. (2005). A wavelet Taylor Galerkin method for parabolic and hyperbolic partial differential equations. International Journal of Computational Methods, 2(1), 75–97.CrossRefGoogle Scholar
  32. Riley, J. D., Morrison, D. D., & Zancanaro, J. F. (1962). Multiple shooting method for two-point boundary value problems. Communications of the ACM, 5, 613–614.CrossRefGoogle Scholar
  33. Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis (3rd ed.). Berlin: Springer.CrossRefGoogle Scholar
  34. Vaquero, J. M., Khaliq, A. Q. M., & Kleefeld, B. (2014). Stabilized explicit Runge–Kutta methods for multi-asset American options. Computers and Mathematics with Applications, 67, 1293–1308.CrossRefGoogle Scholar
  35. Wade, B. A., Khaliq, A. Q. M., Yousuf, M., Vigo-Aguiar, J., & Deininger, R. (2007). On smoothing of the Crank–Nicolson scheme and higher order schemes for pricing barrier options. Journal of Computational and Applied Mathematics, 204, 144–158.CrossRefGoogle Scholar
  36. Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing mathematical models and compuation. Oxford: Oxford Financial Press.Google Scholar
  37. Zhang, W. (2012). Improved implementation of multiple shooting for BVPs. Computer Science Department, University of Toronto.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SciencesAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations