Advertisement

Boosting Exponential Gradient Strategy for Online Portfolio Selection: An Aggregating Experts’ Advice Method

  • Xingyu Yang
  • Jin’an He
  • Hong Lin
  • Yong ZhangEmail author
Article

Abstract

Online portfolio selection is one of the fundamental problems in the field of computational finance. Although existing online portfolio strategies have been shown to achieve good performance, we always have to set the values for different parameters of online portfolio strategies, where the optimal values can only be known in hindsight. To tackle the limits of existing strategies, we present a new online portfolio strategy based on the online learning character of Weak Aggregating Algorithm (WAA). Firstly, we consider a number of Exponential Gradient (EG\((\eta )\)) strategies of different values of parameter \(\eta \) as experts, and then determine the next portfolio by using the WAA to aggregate the experts’ advice. Furthermore, we theoretically prove that our strategy asymptotically achieves the same increasing rate as the best EG\((\eta )\) expert. We prove our strategy, as EG\((\eta )\) strategies, is universal. We present numerical analysis by using actual stock data from the American and Chinese markets, and the results show that it has good performance.

Keywords

Online portfolio selection Universal portfolio Online expert advice Weak aggregating algorithm 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 71301029, 71501049), the Humanities and Social Science Foundation of the Ministry of Education of China (18YJA630132), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2016).

References

  1. Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006). Algorithms for portfolio management based on the Newton method. In International Conference on Machine Learning.Google Scholar
  2. Albeverio, S., Lao, L. J., & Zhao, X. L. (2001). On-line portfolio selection strategy with prediction in the presence of transaction costs. Mathematical Methods of Operations Research, 54(1), 133–161.Google Scholar
  3. Blum, A., & Kalai, A. (1999). Universal portfolios with and without transaction costs. Machine Learning, 35(3), 193–205.Google Scholar
  4. Borodin, A., El-Yaniv, R., & Gogan, V. (2004). Can we learn to beat the best stock. Journal of Artificial Intelligence Research, 21, 579–594.Google Scholar
  5. Cong, F., & Oosterlee, C. W. (2016). Accurate and robust numerical methods for the dynamic portfolio management problem. Computational Economics, 49(3), 1–26.Google Scholar
  6. Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1(1), 1–29.Google Scholar
  7. Cover, T. M., & Ordentlich, E. (1996). Universal portfolio with side information. IEEE Transactions on Information Theory, 42(2), 348–363.Google Scholar
  8. Cui, X. Y., Li, D., Wang, S. Y., & Zhu, S. S. (2012). Better than dynamic mean-variance: time inconsistency and free cash flow stream. Mathematical Finance, 22(2), 346–378.Google Scholar
  9. Fagiuoli, E., Stella, F., & Ventura, A. (2007). Constant rebalanced portfolios and side-information. Quantitative Finance, 7(2), 161–173.Google Scholar
  10. Gaivoronski, A. A., & Stella, F. (2000). Stochastic nonstationary optimization for finding universal portfolios. Annals of Operations Research, 100(1–4), 165–188.Google Scholar
  11. Gaivoronski, A. A., & Stella, F. (2003). On-line portfolio selection using stochastic programming. Journal of Economic Dynamics Control, 27(6), 1013–1043.Google Scholar
  12. Györf, L., Ottucsák, G., & Walk, H. (2012). Machine Learning for Financial Engineering. London: Imperial College Press.Google Scholar
  13. Hazan, E., & Kale, S. (2015). An online portfolio selection algorithm with regret logarithmic in price variation. Mathematical Finance, 25(2), 288–310.Google Scholar
  14. Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4), 325–347.Google Scholar
  15. Huang, D. J., Zhou, J. L., Li, B., & Hoi, S. C. H. (2016). Robust median reversion strategy for on-line portfolio selection. IEEE Transactions on Knowledge and Data Engineering, 28(9), 2480–2493.Google Scholar
  16. Kalnishkan, Y., & Vyugin, M. V. (2008). The weak aggregating algorithm and weak mixability. The Journal of Computer and System Sciences, 74(8), 1228–1244.Google Scholar
  17. Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2016). Portfolio selection with conservative short-selling. Finance Research Letters, 18, 363–369.Google Scholar
  18. Kozat, S. S., & Singer, A. C. (2009). Switching strategies for sequential decision problems with multiplicative loss with application to portfolios. IEEE Transactions on Signal Processing, 57(6), 2192–2208.Google Scholar
  19. Levina, T., & Shafer, G. (2008). Portfolio selection and online learning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(4), 437–473.Google Scholar
  20. Levina, T., Levin, Y., Mcgill, J., Nediak, M., & Vovk, V. (2010). Weak aggregating algorithm for the distribution-free perishable inventory problem. Operations Research Letters, 38(6), 516–521.Google Scholar
  21. Li, B., Hoi, S. C. H., Sahoo, D., & Liu, Z. Y. (2015). Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence, 222, 104–123.Google Scholar
  22. Li, B., Hoi, S. C. H., Zhao, P. L., & Gopalkrishnan, V. (2013). Confidence weighted mean reversion strategy for on-line portfolio selection. ACM Transactions on Knowledge Discovery from Data, 7(1), 1–38.Google Scholar
  23. Li, B., Wang, J. L., Huang, D. J., & Hoi, S. C. H. (2017). Transaction cost optimization for online portfolio selection. Quantitative Finance, 18(8), 1–14.Google Scholar
  24. Li, B., Zhao, P. L., Hoi, S. C. H., & Gopalkrishnan, V. (2012). PAMR: passive aggressive mean reversion strategy for portfolio selection. Machine Learning, 87(2), 221–258.Google Scholar
  25. Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387–406.Google Scholar
  26. Lin, X., Zhang, M., Zhang, Y. F., Gu, Z. Q., & Liu, Y. Q. (2017). Boosting moving average reversion strategy for online portfolio selection: a meta-learning approach. In International Conference on Database Systems for Advanced Applications.Google Scholar
  27. Li, X., Shou, B. Y., & Qin, Z. F. (2012). An expected regret minimization portfolio selection model. European Journal of Operational Research, 218(2), 484–492.Google Scholar
  28. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.Google Scholar
  29. O’Sullivan, P., & Edelman, D. (2015). Adaptive universal portfolios. The European Journal of Finance, 21(4), 337–351.Google Scholar
  30. Singer, Y. (1997). Switching portfolios. International Journal of Neural Systems, 8(4), 445–455.Google Scholar
  31. Yang, X. Y., Li, H. P., Zhang, Y., & He, J. A. (2018). Reversion strategy for online portfolio selection with transaction costs. International Journal of Applied Decision Sciences, 11(1), 79–99.Google Scholar
  32. Zhang, W. G., Zhang, Y., Yang, X. Y., & Xu, W. J. (2012). A class of on-line portfolio selection algorithms based on linear learning. Applied Mathematics and Computation, 218(24), 11832–11841.Google Scholar
  33. Zhang, Y., & Yang, X. Y. (2016). Online ordering policies for a two-product, multi-period stationary newsvendor problem. Computers & Operations Research, 74(1), 143–151.Google Scholar
  34. Zhang, Y., & Yang, X. Y. (2017). Online portfolio selection strategy based on combining experts’ advice. Computational Economics, 50(1), 141–159.Google Scholar
  35. Zhou, X. Y., & Li, D. (2000). Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Applied Mathematics & Optimization, 42(1), 19–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ManagementGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations