Advertisement

Computational Economics

, Volume 53, Issue 2, pp 743–761 | Cite as

Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models

  • Sepehr RamyarEmail author
  • Farhad Kianfar
Article
  • 222 Downloads

Abstract

Given the importance of crude oil prices for businesses, governments and policy makers, this paper investigates predictability of oil prices using artificial neural networks taking into account the exhaustible nature of crude oil and impact of monetary policy along with other major drivers of crude oil prices. A multilayer perceptron neural network is developed and trained with historical data from 1980 to 2014 and using mean square error for testing data, optimal number of hidden layer neurons is determined and the designed MLP neural network is used for estimation of the forecasting model. Meanwhile, an economic model for crude oil prices is developed and estimated using a vector autoregressive model. Results from the proposed ANN are then compared to those of the vector autoregressive model and based on the corresponding R-squared for each model, it is concluded that the MLP neural network can more accurately predict crude oil prices than a VAR model. It is shown, via empirical analysis, that with a combination of appropriate neural network design, feature engineering, and incorporation of crude oil market realities in the model, an accurate prediction of crude oil prices can be attained.

Keywords

Crude oil price Forecasting Artificial neural networks Vector autroregressive model 

References

  1. Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243–247.  https://doi.org/10.1007/BF02532251.Google Scholar
  2. Aloui, C., & Jammazi, R. (2009). The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach. Energy Economics, 31(5), 789–799.  https://doi.org/10.1016/j.eneco.2009.03.009.Google Scholar
  3. Alquist, R., & Kilian, L. (2010). What do we learn from the price of crude oil futures? Journal of Applied Econometrics, 25(4), 539–573.  https://doi.org/10.1002/jae.1159.Google Scholar
  4. Amano, R. A., & van Norden, S. (1998). Exchange rates and oil prices. Review of International Economics, 6(4), 683–694.  https://doi.org/10.1111/1467-9396.00136.Google Scholar
  5. Askari, H., & Krichene, N. (2008). Oil price dynamics (2002–2006). Energy Economics, 30(5), 2134–2153.  https://doi.org/10.1016/j.eneco.2007.12.004.Google Scholar
  6. Askari, H., & Krichene, N. (2010). The impact of monetary policy on oil process parameters and market expectations. Global Finance Journal, 21(2), 186–200.  https://doi.org/10.1016/j.gfj.2010.06.005.Google Scholar
  7. Askari, H., & Krichene, N. (2010). An oil demand and supply model incorporating monetary policy. Energy, 35(5), 2013–2021.  https://doi.org/10.1016/j.energy.2010.01.017.Google Scholar
  8. Askari, H., & Krichene, N. (2010c). Monetary policy and world commodity markets: PSL. Quarterly Review, 63, 143–175.Google Scholar
  9. Basheer, I., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.  https://doi.org/10.1016/S0167-7012(00)00201-3.Google Scholar
  10. Baumeister, C., & Kilian, L. (2012). Real-time forecasts of the real price of oil. Journal of Business & Economic Statistics, 30(2), 326–336.  https://doi.org/10.1080/07350015.2011.648859.Google Scholar
  11. Boroushaki, M., Ghofrani, M. B., Lucas, C., & Yazdanpanah, M. J. (2003). Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy systems. IEEE Transactions on Nuclear Sceince, 30(1), 159–174.  https://doi.org/10.1109/TNS.2002.807856.Google Scholar
  12. Brandt, A. R. (2010). Review of mathematical models of future oil supply: Historical overview and synthesizing critique. Energy, 35(9), 3958–3974.  https://doi.org/10.1016/j.energy.2010.04.045.Google Scholar
  13. Cheong, C. W. (2009). Modeling and forecasting crude oil markets using ARCH-type models. Energy Policy, 37(6), 2346–2355.  https://doi.org/10.1016/j.enpol.2009.02.026.Google Scholar
  14. FRB: Data Releases. (n.d.). https://www.federalreserve.gov/econresdata/statisticsdata.htm. Accessed 23 April 2015
  15. Gabriel, S. A., Kydes, A. S., & Whitman, P. (2001). The national energy modeling system: A large-scale energy-economic equilibrium model. Operations Research, 49(1), 14–25.  https://doi.org/10.1287/opre.49.1.14.11195.Google Scholar
  16. Godarzi, A. A., Amiri, R. M., Talaei, A., & Jamasb, T. (2014). Predicting oil price movements: A dynamic artificial neural network approach. Energy Policy, 68, 371–382.  https://doi.org/10.1016/j.enpol.2013.12.049.Google Scholar
  17. Greiner, A., Semmler, W., & Mette, T. (2012). An economic model of oil exploration and extraction. Computational Economics, 40(4), 387–399.  https://doi.org/10.1007/s10614-011-9272-0.Google Scholar
  18. Gürkaynak, R. S., Sack, B. P., & Swanson, E. T. (2007). Market-based measures of monetary policy expectations on JSTOR. Journal of Business & Economic Statistics, 25(2), 201–212. https://www.jstor.org/stable/27638925?seq=1#page_scan_tab_contents
  19. Hamilton, J. D. (2008). Understanding crude oil prices. Energy Journal,.  https://doi.org/10.1073/pnas.0703993104.Google Scholar
  20. Hoteling, H. (1931). The economics of exhaustible resources. Journal of Political Economy, 39, 137.  https://doi.org/10.1086/254195.Google Scholar
  21. IMF Data. (n.d.). https://www.imf.org/external/data.htm. Accessed 23 April 2015
  22. Inoue, A., & Kilian, L. (2005). In-sample or out-of-sample tests of predictability: Which one should we use? Econometric Reviews, 23(4), 371–402.  https://doi.org/10.1081/ETC-200040785.Google Scholar
  23. Kilian, L. (2006). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=975262. Accessed 20 April 2017
  24. Kilian, L., & Murphy, D. P. (2013). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478.  https://doi.org/10.1002/jae.2322.Google Scholar
  25. Kilian, L., & Taylor, M. P. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85–107.  https://doi.org/10.1016/S0022-1996(02)00060-0.Google Scholar
  26. Krichene, N. (2006). World crude oil markets: Monetary policy and the recent oil shock. https://www.imf.org/external/pubs/cat/longres.aspx?sk=18890. Accessed 20 April 2017
  27. Leduc, S., & Sill, K. (2004). A quantitative analysis of oil-price shocks, systematic monetary policy, and economic downturns. Journal of Monetary Economics, 51(4), 781–808.  https://doi.org/10.1016/j.jmoneco.2003.09.004.Google Scholar
  28. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.  https://doi.org/10.1007/978-3-540-27752-1.Google Scholar
  29. Lütkepohl, H. (2009). Econometric analysis with vector autoregressive models. In Handbook of computational econometrics (pp. 281–320). New York: Wiley.Google Scholar
  30. Maslyuk, S., & Smyth, R. (2008). Unit root properties of crude oil spot and futures prices. Energy Policy, 36(7), 2591–2600.  https://doi.org/10.1016/j.enpol.2008.03.018.Google Scholar
  31. Mingming, T., & Jinliang, Z. (2012). A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices. Journal of Economics and Business, 64(4), 275–286.  https://doi.org/10.1016/j.jeconbus.2012.03.002.Google Scholar
  32. Movagharnejad, K., Mehdizadeh, B., Banihashemi, M., & Kordkheili, M. S. (2011). Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network. Energy, 36(7), 3979–3984.  https://doi.org/10.1016/j.energy.2011.05.004.Google Scholar
  33. Neumayer, E. (2000). Scarce or abundant? The economics of natural resource availability. Journal of Economic Surveys, 14(3), 307–335.  https://doi.org/10.1111/1467-6419.00112.Google Scholar
  34. Pan, H., Haidar, I., & Kulkarni, S. (2009). Daily prediction of short-term trends of crude oil prices using neural networks exploiting multimarket dynamics. Frontiers of Computer Science in China, 3(2), 177–191.  https://doi.org/10.1007/s11704-009-0025-3.Google Scholar
  35. Park, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the U.S. and 13 European countries. Energy Economics, 30(5), 2587–2608.  https://doi.org/10.1016/j.eneco.2008.04.003.Google Scholar
  36. Stiglitz, J. E. (1976). Monopoly and the rate of extraction of exhaustible resources on JSTOR. The American Economic Review, 66(4), 655–661. https://www.jstor.org/stable/1806704?seq=1#page_scan_tab_contents. Accessed 20 April 2017
  37. Tambe, S. S., Kulkarni, B. D., & Deshpande, P. B. (1996). Elements of artificial neural networks with selected applications in chemical engineering, and chemical and biological sciences. Simulation & Advanced Controls, Incorporated. https://books.google.com/books/about/Elements_of_Artificial_Neural_Networks_w.html?id=f1wQAAAACAAJ&pgis=1. Accessed 2 May 2015
  38. U.S. Energy Information Administration (EIA) - Data. (n.d.). https://webcache.googleusercontent.com/search?q=cache:tz94puOunuIJ:www.eia.gov/petroleum/data.cfm+&cd=1&hl=en&ct=clnk&gl=ir. Accessed 23 April 2015
  39. Wei, Y., Wang, Y., & Huang, D. (2010). Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Economics, 32(6), 1477–1484.  https://doi.org/10.1016/j.eneco.2010.07.009.Google Scholar
  40. Yousefi, A., & Wirjanto, T. S. (2004). The empirical role of the exchange rate on the crude-oil price formation. Energy Economics, 26(5), 783–799.  https://doi.org/10.1016/j.eneco.2004.06.001.Google Scholar
  41. Yu, L., Wang, S., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, 30(5), 2623–2635.  https://doi.org/10.1016/j.eneco.2008.05.003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringSharif University of TechnologyTehranIran

Personalised recommendations