Advertisement

Computational Economics

, Volume 54, Issue 1, pp 281–303 | Cite as

Applying Independent Component Analysis and Predictive Systems for Algorithmic Trading

  • Attila CefferEmail author
  • Janos Levendovszky
  • Norbert Fogarasi
Article

Abstract

In this paper, a Nonlinear AutoRegressive network with eXogenous inputs and a support vector machine are proposed for algorithmic trading by predicting the future value of financial time series. These architectures are capable of modeling and predicting vector autoregressive VAR(p) time series. In order to avoid overfitting, the input is pre-processed by independent component analysis to filter out the most noise like component. In this way, the accuracy of the prediction and the trading performance is increased. The proposed algorithms have a small number of free parameters which makes fast learning and trading possible. The method is not only tested on single asset price series, but also on predicting the value of mean reverting portfolios obtained by maximizing the predictability parameter of VAR(1) processes. The tests were first performed on artificially generated data and then on real data selected from exchange traded fund time series including bid–ask spread. In both cases the proposed method could achieve positive returns.

Keywords

Algorithmic trading Financial time series Neural network Support vector machine Independent component analysis Mean reverting portfolio 

References

  1. Aalto University, D.o.C.S. (2015). The fastica package for matlab. http://research.ics.aalto.fi/ica/fastica/.
  2. Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge: The MIT Press.Google Scholar
  3. Back, A. D., & Weigend, A. S. (1997). A first application of independent component analysis to extracting structure from stock returns. International Journal of Neural Systems, 08(04), 473–484.CrossRefGoogle Scholar
  4. Back, A. D., & Weigend, A. S. (1998). Decision technologies for computational finance. In Proceedings of the fifth international conference computational finance, chapter discovering structure in finance using independent component analysis (pp. 309–322). Boston, MA: Springer.Google Scholar
  5. Chan, E. (2013). Algorithmic trading: Winning strategies and their rationale (1st ed.). Hoboken, NJ: Wiley Publishing.Google Scholar
  6. Chang, C. C. & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2, 27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  7. Chekhlov, A., Uryasev, S., & Zabarankin, M. (2005). Drawdown measure in portfolio optimization. International Journal of Theoretical and Applied Finance, 08(01), 13–58.CrossRefGoogle Scholar
  8. Cheung, Y., & Xu, L. (2001). Independent component ordering in ica time series analysis. Neurocomputing, 41, 145–152.CrossRefGoogle Scholar
  9. d’Aspremont, A. (2007). Identifying small mean reverting portfolios. CoRR abs/0708.3048.Google Scholar
  10. Dreyfus, G. (2005). Neural networks—methodology and applications. Berlin: Springer. doi: 10.1007/3-540-28847-3.CrossRefGoogle Scholar
  11. Fogarasi, N., & Levendovszky, J. (2013). Sparse, mean reverting portfolio selection using simulated annealing. Algorithmic Finance, 2(3–4), 197–211.CrossRefGoogle Scholar
  12. Gestel, T. V., Suykens, J. A. K., Baestaens, D. E., Lambrechts, A., Lanckriet, G., Vandaele, B., et al. (2001). Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, 12(4), 809–821.CrossRefGoogle Scholar
  13. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Network, 13(4–5), 411–430.CrossRefGoogle Scholar
  14. Itô, K. (1944). Stochastic integral. Proceedings of the Imperial Academy, 20(8), 519–524. doi: 10.3792/pia/1195572786.CrossRefGoogle Scholar
  15. Johnson, R. A., & Wichern, D. W. (Eds.). (1988). Applied multivariate statistical analysis. Upper Saddle River, NJ: Prentice-Hall Inc.Google Scholar
  16. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215–236. (Financial applications, part II).CrossRefGoogle Scholar
  17. Kim, K. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1–2), 307–319. (Support vector machines).CrossRefGoogle Scholar
  18. Kumar, P. N., Seshadri, G. R., Hariharan, A., Mohandas, V. P. & Balasubramanian, P. (2011). Technology systems and management. In First international conference, ICTSM 2011, Mumbai, India, February 25–27, 2011. Selected papers, chapter financial market prediction using feed forward neural network, (pp. 77–84). Berlin, Heidelberg: Springer.Google Scholar
  19. Lahmiri, S. (2011). A comparison of pnn and svm for stock market trend prediction using economic and technical information. International Journal of Computer Applications, 29(3), 24–30.Google Scholar
  20. Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115–125.CrossRefGoogle Scholar
  21. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.Google Scholar
  22. Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.CrossRefGoogle Scholar
  23. Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6), 1456–1470. doi: 10.1109/72.728395.CrossRefGoogle Scholar
  24. Sipos, I. R., & Levendovszky, J. (2013). Optimizing sparse mean reverting portfolios. Algorithmic Finance, 2(2), 127–139.CrossRefGoogle Scholar
  25. Tsay, R. S. (2005). Analysis of financial time series. Wiley series in probability and statistics. Hoboken, NJ: Wiley-Interscience.CrossRefGoogle Scholar
  26. Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical Review, 36, 823–841.CrossRefGoogle Scholar
  27. Vapnik, V. N. (1995). The nature of statistical learning theory. New York, NY: Springer.CrossRefGoogle Scholar
  28. Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock decision support system based on box theory and SVM algorithm. Expert Systems with Applications, 37(2), 1015–1022.CrossRefGoogle Scholar
  29. Wilamowski, B. M., & Irwin, J. D. (2011). Intelligent systems (2nd ed.). Boca Raton, FL: CRC Press Inc.Google Scholar
  30. Yahoo (2015). Yahoo! finance. https://finance.yahoo.com.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Networked Systems and ServicesBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations