Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 6, pp 1028–1031 | Cite as

Two New Flavones from the Seeds of Arctium lappa and Their Bioactivity

  • Meng-Jie Liang
  • Liang Deng
  • Wan-Li Zeng
  • Qian Gao
  • Hai-Ying Xiang
  • Jing Li
  • Xin Liu
  • Qi-Li Mi
  • Shan-Shan Hu
  • Guang-Yu Yang
  • Yan-Ping LiEmail author
  • Ya-Dong GuoEmail author
Article
  • 25 Downloads

Two new flavones, 8,4′-dimethoxy-6-(2-oxopropyl)-flavone (1) and 8,4′-dimethoxy-6-(3-hydroxypropyl)- flavone (2), were isolated from the seeds of Arctium lappa. Their structures were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1 and 2 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results showed that compounds 1 and 2 exhibited weak active with diameter of inhibition zone (IZD) 10.8 ± 1.0 and 9.3 ± 0.8 mm, respectively. Compounds 1 and 2 were also tested for antioxidant activity, and they show good antioxidant activity with IC50 values of 3.85 and 3.47 μg/mL, respectively.

Keywords

flavones Arctium lappa anti-MRSA activity antioxidant activity 

Notes

Acknowledgment

This work was financially supported by the Joint Foundation of Yunnan Province-Kunming Medical University [2017FE468(-186)], the Research Foundation of China Tobacco Yunnan Industrial Co., Ltd (No. 2017JC05), and the National Natural Science Foundation of China (No. 81660717).

References

  1. 1.
    R. Lin and Z. Shi, Flora of China, Vol. 78, Chinese Science Press, Beijing, 1987, p. 58.Google Scholar
  2. 2.
    T. Ozawa, J. Pharm. Soc. Jpn., 16, 551 (1952).CrossRefGoogle Scholar
  3. 3.
    M. Abe, K. Ueno, Y. Ishiguro, T. Omori, S. Onodera, and N. Shiomi, J. Appl. Glycosci., 56, 239 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. S. Chan, L. N. Cheng, J. H. Wu, E. Chan, Y. W. Kwan, S. M. Lee, G. P. Leung, P. H. Yu, and S. C. Wan, Inflammopharmacology, 19, 245 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Matsumoto, K. Hosononishiyama, and H. Yamada, Planta Med., 72, 276 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. N. Yang, X. Y. Huang, Z. M. Feng, J. S. Jiang, and P. C. Zhang, J. Agric. Food Chem., 63, 7958 (2015).CrossRefGoogle Scholar
  7. 7.
    C. Lou, Z. Zhu, Y. Zhao, R. Zhu, and H. Zhao, Oncol. Rep., 37, 179 (2017).CrossRefGoogle Scholar
  8. 8.
    J. M. Yoo, J. H. Yang, H. J. Yang, W. K. Cho, and J. Y. Ma, Int. J. Mol. Med., 37, 501 (2016).CrossRefGoogle Scholar
  9. 9.
    I. Iochkova, Dokl. Boly. Akac. Nauk., 42, 43 (1989).Google Scholar
  10. 10.
    X. W. Jiang, J. P. Bai, Q. Zhang, X. L. Hu, X. Tian, J. Zhu, J. Liu, W. H. Meng, and Q. C. Zhao, Phytochem. Lett., 15, 159 (2016).CrossRefGoogle Scholar
  11. 11.
    B. Hou, W. Wang, H. Gao, S. Cai, and C. Wang, J. Int. Med. Res., 46, 158 (2018).CrossRefGoogle Scholar
  12. 12.
    Z. Zheng, X. Wang, P. Liu, M. Li, H. Dong, and X. Qiao, Molecules, 23, E429 (2018).Google Scholar
  13. 13.
    A. R. C. Souza, A. R. Guedesa, J. M. F. Rodriguez, M. C. M. Bombardelli, and M. L. Corazza, J. Supercrit. Fluid., 140, 137 (2018).CrossRefGoogle Scholar
  14. 14.
    Z. Lou, C. Li, X. Kou, F. Yu, H. Wang, G. M. Smith, and S. Zhu, J. Food. Prot., 79, 1404 (2016).CrossRefGoogle Scholar
  15. 15.
    G. L. Hostetler, R. A. Ralston, and S. J. Schwartz, Adv. Nutr., 8 (3), 423 (2017).CrossRefGoogle Scholar
  16. 16.
    V. D. Amelia, R. Aversano, P. Chiaiese, and D. Carputo, Phytochem. Rev., 17, 611 (2018).CrossRefGoogle Scholar
  17. 17.
    T. Y. Wang, Q. Li, and K. S. Bi, Asian. J. Pharm. Sci., 13, 12 (2018).CrossRefGoogle Scholar
  18. 18.
    Q. F. Hu, B. Zhou, X. M. Gao, L. Y. Yang, L. D. Shu, Y. Q. Shen, G. P. Li, C. T. Che, and G. Y. Yang, J. Nat. Prod., 75, 1909 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Zhou, Y. K. Li, X. X. Wu, M. Li, Y. Q. Ye, X. M. Gao, and Q. F. Hu, Chem. Nat. Compd., 51, 840 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Zhou, K. Zhou, P. He, K. M. Wang, R. Z. Zhu, Y. D. Wang, W. Dong, G. P. Li, H. Y. Yang, Y. Q. Ye, G. Du, X. M. Li, and Q. F. Hu, Planta Med., 82, 414 (2016).CrossRefGoogle Scholar
  21. 21.
    Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, Vol. 32, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 9th edition (2012).Google Scholar
  22. 22.
    E. Tripoli, M. Guardia, S. Giammanco, D. Majo, and M. Giammanco, Food Chem., 104, 466 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meng-Jie Liang
    • 1
    • 2
  • Liang Deng
    • 1
    • 2
  • Wan-Li Zeng
    • 2
  • Qian Gao
    • 1
    • 2
  • Hai-Ying Xiang
    • 2
  • Jing Li
    • 2
  • Xin Liu
    • 2
  • Qi-Li Mi
    • 2
  • Shan-Shan Hu
    • 2
  • Guang-Yu Yang
    • 2
  • Yan-Ping Li
    • 3
    Email author
  • Ya-Dong Guo
    • 1
    Email author
  1. 1.School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingP. R. China
  2. 2.Key Laboratory of Tobacco Chemistry of Yunnan ProvinceChina Tobacco Yunnan Industrial Co., Ltd.KunmingP. R. China
  3. 3.College of Pharmaceutic ScienceYunnan University of Traditional Chinese MedicineKunmingP. R. China

Personalised recommendations