Advertisement

Isolation and Characterization of a New Antimicrobial Peptide from Pimpinella anisum Seeds

  • Ya. Mijiti
  • A. Abulimiti
  • A. Obulkasim
  • Sh. Ya. MirzaakhmedovEmail author
  • Dzh. F. Ziyavitdinov
  • A. Yili
  • Sh. I. Salikhov
  • H. A. Aisa
Article
  • 3 Downloads

A homogeneous peptide of molecular mass 9.0 kDa with high antimicrobial activity for E. coli ATCC11229 and Candida albicans ATCC10231 was isolated for the first time from Pimpinella anisum seeds using gel filtration and HPLC.

Keywords

Pimpinella anisum seeds proteins and peptides isolation antimicrobial activity 

Notes

Acknowledgment

The work was performed in the framework of a new project on the research and development of endemic traditional Chinese medicine in Xinjiang based on traditional Xinjiang medicine. Study of quality standards for 10 types of widely used drugs No. 2016/01/04. We thank the National Science and Technology Foundation for supporting research and development of new ethnic varieties of drugs and its key innovative technologies (2017ZX09301045); the Central Asian Center of Drug Discovery and Development, Chinese Academy of Sciences, Xinjiang Autonomous Region, for technological innovations for young scientists; and PIFI Fund of the Chinese Academy of Sciences for invited scientists No. 2019VBA0013.

References

  1. 1.
    K. H. Lee, J. Nat. Prod., 73, 500 (2010).CrossRefGoogle Scholar
  2. 2.
    B. Hughes, Nat. Rev. Drug Discovery, 7, 107 (2008).CrossRefGoogle Scholar
  3. 3.
    S. C. Mansour, O. M. Pena, and R. E. W. Hancock, Trends Immunol., 35, 443 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Peschel and H. G. Sahl, Nat. Rev. Microbiol., 4, 529 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Cassone and L. Otvos, Expert Rev. Anti-Infect. Ther., 8, 704 (2010).CrossRefGoogle Scholar
  6. 6.
    T. Schuerholz, K. Brandenburg, and G. Marx, Crit. Care, 16, 207 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Mahatmanto, G. Aaron, J. S. Mylne, and D. J. Craik, Fitoterapia, 95, 22 (2014).CrossRefGoogle Scholar
  8. 8.
    O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265 (1951).Google Scholar
  9. 9.
    U. K. Laemmli, Nature, 227, 680 (1970).CrossRefGoogle Scholar
  10. 10.
    S. F. F. Ribeiro, A. O. Carvalho, M. Da Cunha, R. Rodrigues, L. P. Cruz, and V. M. Melo, Toxicon, 50, 600 (2007).CrossRefGoogle Scholar
  11. 11.
    T. Schuerholz, K. Brandenburg, and G. Marx, Crit. Care, 16, 207 (2012).CrossRefGoogle Scholar
  12. 12.
    H. Haavik and S. Thomassen, J. Gen. Microbiol., 76, 451 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya. Mijiti
    • 1
    • 2
  • A. Abulimiti
    • 3
  • A. Obulkasim
    • 1
    • 2
  • Sh. Ya. Mirzaakhmedov
    • 4
    Email author
  • Dzh. F. Ziyavitdinov
    • 4
  • A. Yili
    • 1
  • Sh. I. Salikhov
    • 4
  • H. A. Aisa
    • 1
  1. 1.Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing UniversityBeijingP.R. China
  4. 4.Institute of Bioorganic ChemistryAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan

Personalised recommendations