Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 793–795 | Cite as

Gliotoxin Analogues from Endophytic Penicillium sp. of Eucommia ulmoides and Their Antimicrobial Activity

  • Hongchi ZhangEmail author
  • Zhipeng An
Article
  • 7 Downloads

Gliotoxin, displaying this typical bridged disulfide, was described in 1943 [1]. It is one of the better known members of the epipo-lythiodioxopiperazine (ETP) class of fungal metabolites. The structure of the ETP class of fungal products is characterized by the bridged disulfide piperazinedione six-membered ring that appears to be necessary for most of the biological properties of these compounds [2]. Endophytic fungi are eukaryotic organisms that live inside plant tissues and are usually specific at the host species level [3, 4]. Endophytic fungi show high potential as sources of novel antimicrobial, antiviral, anticancer, antioxidant, and insecticidal compounds [5].

In the course of our search for biologically active metabolites from endophytic fungi from Chinese medicinal plants, a subculture of an isolate of Penicillium sp., obtained from roots of Eucommia ulmoides, was cultivated on potato dextrose agar (PDA). Eucommia ulmoidesOliv. (Eucommiaceae), known as “Du-Zhong,” is...

References

  1. 1.
    J. R. Johnson, W. F. Bruce, and J. D. Dutcher, J. Am. Chem. Soc., 65, 2005 (1943).CrossRefGoogle Scholar
  2. 2.
    Tynchtyk Amatov and Ullrich Jahn, Angew Chem. Int. Ed., 53, 3312 (2014).CrossRefGoogle Scholar
  3. 3.
    B. Schulz, C. Boyle, S. Draeger, A. K. Rommert, and K. Krohn, Mycol. Res., 48, 996 (2002).CrossRefGoogle Scholar
  4. 4.
    G. Strobel and B. Daisy, Microbiol. Mol. Biol. Rev., 67, 491 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Chandra, Appl. Microbiol. Biotechnol., 95, 47 (2012).CrossRefGoogle Scholar
  6. 6.
    W. Z. Xie, C. S. Fan, and Z. Y. Zhu, Quan Guo Zhong Cao Yao Hui Bian, People′s Medical Publishing House, Beijing, 1996, pp. 423–424.Google Scholar
  7. 7.
    M. Kaouadji, R. Steiman, F. Seigle-Murandi, S. Krivobok, and L. Sage, J. Nat. Prod., 53, 717 (1990).CrossRefGoogle Scholar
  8. 8.
    G. W. Kirby, D. J. Robins, M. A. Sefton, and R. R. Talekar, J. Chem. Soc. Perkin Trans 1, 119 (1980).CrossRefGoogle Scholar
  9. 9.
    X. F. Li, S. K. Kim, K. W. Nam, J. S. Kang, H. D. Choi, and B. W. Son, J. Antibiot., 59, 248 (2006).CrossRefGoogle Scholar
  10. 10.
    A. G. Anent, J. R. Hanson, and A. Truneh, Phytochemistry, 32, 197 (1993).Google Scholar
  11. 11.
    Y. Sun, K. Takada, Y. Takemoto, M. Yoshida, Y. Nogi, S. Okada, and S. Matsunaga, J. Nat. Prod., 75, 111 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Okamoto, K. Yoshida, I. Uchida, M. Nishikawa, M. Kohsaka, and H. Aoki, Chem. Pharm. Bull., 34, 340 (1986).CrossRefGoogle Scholar
  13. 13.
    G. W. Kirby, G. V. Rao, and D. J. Robins, J. Chem. Soc. Perkin Trans 1, 301 (1988).CrossRefGoogle Scholar
  14. 14.
    J. M. Andrews, J. Antimicrob. Chemother., 48, 5 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life ScienceShanxi Datong UniversityDatongP. R. China
  2. 2.Applied Biotechnology InstituteShanxi Datong UniversityDatongP. R. China

Personalised recommendations