Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 734–735 | Cite as

Chemical Constituents of Limonium gmelinii Roots

  • A. Tuohongerbieke
  • A. Kaiyrkulova
  • Y. Q. Guan
  • J. Zhu
  • L. L. Shi
  • G. Sabir
  • H. A. AisaEmail author
Article
  • 5 Downloads

The genus Limonium Miller (Plumbaginaceae [1]) comprises 350 species that grow worldwide [2], 22 of which are indigenous to China [3].

L. gmelinii (Siberian statice) is a halophyte that grows on saline soils. Its roots are used in folk medicine as an astringent and for diseases of the upper respiratory and gastrointestinal tracts [4].

Roots of L. gmelinii were collected in August 2015 in Bortala autonomous prefecture in Xinjiang (PRC). Dried roots (20 kg) were extracted with EtOH (95%, 3 × 160 L) for 2 h. The extracts were combined and vacuum distilled to dryness. The resulting extract was diluted with H2O and worked up successively with petroleum ether, EtOAc, CHCl3, and n-BuOH. The solvents were distilled off to afford petroleum ether (232.4 g), EtOAc (206.8), CHCl3 (158.2), and n-BuOH fractions (876.3). A part of the EtOAc fraction (120 g) was chromatographed over a column of silica gel (2.5 kg) using a CHCl3–MeOH gradient (100:0→0:100) to produce 15 fractions that were...

Notes

Acknowledgment

The work was sponsored by the Natural Science Foundation of China (Grant No. 31460087).

References

  1. 1.
    E. G. Voss, “Flora Europaea,” Bull. Torrey Bot. Club, 107, 556 (1980).CrossRefGoogle Scholar
  2. 2.
    M. D. Lledo, M. Erben, and M. B. Crespo, Taxon, 52, (2003).Google Scholar
  3. 3.
    Flora of China, Flora of China Editorial Committee of Chinese Academy of Sciences, 60 (1), 45 (1987).Google Scholar
  4. 4.
    L. M. Korulkina and G. E. Zhusupova, Chem. Nat. Compd., 40, 417 (2004).CrossRefGoogle Scholar
  5. 5.
    H.-Y. Sun, L.-J. Long, and J. Wu, J. Chin. Med. Mater., 29, 671 (2006).Google Scholar
  6. 6.
    M. Pardhasaradhi and G. S. Sidhu, Phytochemistry, 11, 1520 (1972).CrossRefGoogle Scholar
  7. 7.
    X. M. Zhao and X. Q. Ye, J. Fruit Sci., 23, 458 (2006).Google Scholar
  8. 8.
    X. F. Zhang and T. M. Hung, Arch. Pharm. Res., 29, 1102 (2006).CrossRefGoogle Scholar
  9. 9.
    G. Ye and C. G. Huang, Chem. Nat. Compd., 42, 232 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, L. L. Zhou, R. Li, and Y. Wang, J. Chin. Med. Mater., 25, 254 (2002).Google Scholar
  11. 11.
    N. G. Abdulladzhanova, S. M. Mavlyanov, and D. N. Dalimov, Chem. Nat. Compd., 37, 193 (2001).CrossRefGoogle Scholar
  12. 12.
    Z. Y. Wang and L. Wang, Chin. J. Exp. Tradit. Med. Form., 23 (8), 82 (2017).Google Scholar
  13. 13.
    P. Ch. Wang and X. L. Zhou, J. Chin. Farm., 53 (06), 418 (2018).Google Scholar
  14. 14.
    X. F. Wang and Ch. L, Chin. Tradit. Herb. Drugs, 42 (5), 848 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Tuohongerbieke
    • 1
    • 2
  • A. Kaiyrkulova
    • 1
    • 2
  • Y. Q. Guan
    • 3
  • J. Zhu
    • 3
  • L. L. Shi
    • 3
  • G. Sabir
    • 3
  • H. A. Aisa
    • 1
    Email author
  1. 1.The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.Xinjiang Institute of Chinese Material Medica and EthnomedicineUrumqiP. R. China

Personalised recommendations