Advertisement

Pyridone Alkaloids from the Leaves of Ricinus communis and Their Inhibitory Effect Against Protein Tyrosine Phosphatase 1B

  • Ya-Nan Tan
  • Jin Zeng
  • Sheng-Nan Zhang
  • Rui-Jing Ma
  • Zheng-Hong Pan
  • Qin-Gang TanEmail author
Article
  • 2 Downloads

Ricinus communis L., an annual or perennial herb of the Euphorbiaceae family and cultivated mainly in tropical and subtropical regions worldwide, possesses antimicrobial [1], acaricidal [2], and antidiabetic activities [3]. According to the Chinese Pharmacopoeia, the seeds of R. communis are applied to cure scrofula, chronic pharyngitis, skin infections, etc. [4]. In our continuous efforts to find antidiabetic therapeutics from medicinal plants, the chemical constituents of R. communis were investigated, which led to the isolation of 23 compounds. The spectral data of compound 1 are reported for the first time in this paper, and the inhibitory activities against protein tyrosine phosphatase 1B of 1 and its analogues were evaluated.

Compound 1 was obtained as colorless needle crystals, which dissolved in DMSO and sparingly in acetone. The positive ESI mass spectrum showed peaks at m/ z 183 (M +), 206 [M + Na] +, and 389 [2M + Na] +, indicating that the molecule contained an odd number of...

Notes

Acknowledgment

This project was supported by the National Natural Science Foundation of China (No. 81360477), the Fund of Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization (No. FPRU2014-6), and the Natural Science Foundation of Guangxi (No. 2016GXNSFAA380268). The PTP1B inhibitory assay was carried out by the National Center for Drug Screening, Shanghai.

References

  1. 1.
    R. Naz and A. Bano, Asian Pac. J. Trop. Biomed., 2, 944 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Ghosh, S. S. Tiwari, S. Srivastava, A. K. Sharma, S. Kumar, D. D. Ray, and A. K. S. Rawat, Vet. Parasitol., 192, 259 (2013).CrossRefGoogle Scholar
  3. 3.
    Mann, P. K. S. Anita, and A. K. Gupta, Int. J. Pharma BioSci., 4, B382 (2013).Google Scholar
  4. 4.
    State Pharamacopoeia Committee, Chinese Pharmacopoeia, China Medical Science Press, Beijing, 2015, 351 pp.Google Scholar
  5. 5.
    Q. Y. Zhao, R. Gui, R. S. Na, and W. H. Huang, Feed Res., 6, 27 (2003).Google Scholar
  6. 6.
    S. S. Kang, G. A. Cordell, D. D. Soejarto, and H. H. S. Fong, J. Nat. Prod., 48, 155 (1985).CrossRefGoogle Scholar
  7. 7.
    S. Faizi, H. Siddiqi, A. Naz, S. Bano, and Lubna, Helv. Chim. Acta, 93, 466 (2010).CrossRefGoogle Scholar
  8. 8.
    I. Merfort and D. Wendisch, Planta Med., 53, 434 (1987).CrossRefGoogle Scholar
  9. 9.
    C. D. Liu, J. Chen, and J. H. Wang, Chem. Nat. Compd., 45, 808 (2009).CrossRefGoogle Scholar
  10. 10.
    O. O. Ogunlana, H. S. Kim, Y. Wataya, J. O. Olagunju, A. A. Akindahunsi, and N. H. Tan, J. Chem. Pharm. Res., 7, 931 (2015).Google Scholar
  11. 11.
    S. W. Kang, K. Kang, M. A. Kim, N. R. Jeon, S. M. Kim, J. S. Jeon, C. W. Nho, and B. H. Um, Eur. Food Res. Technol., 239, 237 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. M. Li, Y. Y. Zhao, Y. B. Fan, X. Wang, and L. N. Cai, J. Chin. Pharm. Sci., 6, 70 (1997).Google Scholar
  13. 13.
    N. Parveen, N. U. Khan, T. Inoue, and M. Sakurai, Phytochemistry, 27, 3990 (1988).CrossRefGoogle Scholar
  14. 14.
    Z. L. Li, D. Y. Li, X. Li, N. Li, and D. L. Meng, Acta Pharm. Sin., 41, 1197 (2006).Google Scholar
  15. 15.
    W. J. Lu, Q. K. Ya, J. Y. Chen, and B. M. Liu, Acta Pharm. Sin., 43, 1032 (2008).Google Scholar
  16. 16.
    H. P. Wang, F. Cao, and X. W. Yang, Chin. Trad. Herb. Drugs, 44, 24 (2013).Google Scholar
  17. 17.
    T. Yoshida, H. Itoh, S. Matsunaga, R. Tanaka, and T. Okuda, Chem. Pharm. Bull., 40, 53 (1992).CrossRefGoogle Scholar
  18. 18.
    M. S. Ali, S. Ahmed, S. A. Ibrahim, and R. B. Tareen, Chem. Biodiv., 2, 910 (2005).CrossRefGoogle Scholar
  19. 19.
    R. Tanaka, K. Masuda, and S. Matsunaga, Phytochemistry, 32, 472 (1993).CrossRefGoogle Scholar
  20. 20.
    J. Ito and M. Niwa, Nat. Med., 51, 269 (1997).Google Scholar
  21. 21.
    S. K. Chaudhuri, F. Fullas, D. M. Brown, M. C. Wani, M. E. Wall, L. Cai, W. Mar, S. K. Lee, Y. Luo, K. Zaw, H. H. S. Fong, J. M. Pezzuto, and A. D. Kinghorn, J. Nat. Prod., 58, 1 (1995).CrossRefGoogle Scholar
  22. 22.
    A. Ikuta and H. Itokawa, J. Nat. Prod., 52, 623 (1989).CrossRefGoogle Scholar
  23. 23.
    Sahidin, Nohong, A. Sani, M. Anggrenimanggau, A. Sukohar, H. Widodo, and S.Baharum, Int. J. Pharm. Sci., 6, 350 (2014).Google Scholar
  24. 24.
    L. Jia, F. Xi, N. Wang, L. L. Jing, and D. Y. Kong, Chin. J. Pharm., 41, 98 (2010).Google Scholar
  25. 25.
    K. Nasu, K. Takahashi, M. Morisaki, and Y. Fujimoto, Phytochemistry, 54, 381 (2000).CrossRefGoogle Scholar
  26. 26.
    V. Piccialli and D. Sica, J. Nat. Prod., 50, 915 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya-Nan Tan
    • 1
    • 2
  • Jin Zeng
    • 1
  • Sheng-Nan Zhang
    • 1
  • Rui-Jing Ma
    • 1
  • Zheng-Hong Pan
    • 3
  • Qin-Gang Tan
    • 1
    Email author
  1. 1.Pharmacy SchoolGuilin Medical UniversityGuilinP. R. China
  2. 2.School of Traditional Chinese MedicineChina Pharmaceutical UniversityNanjingP. R. China
  3. 3.Guangxi Key Laboratory of Functional Phytochemicals Research and UtilizationGuangxi Institute of BotanyGuilinP. R. China

Personalised recommendations