Advertisement

Occurrence of Plumbagin and 7-Methyljuglone in the Patagonian Sundew Drosera uniflora

  • V. Sanhueza
  • V. Fajardo
  • P. CuadraEmail author
Article
  • 1 Downloads

Drosera spp. are carnivorous plants. Its extracts have been used in traditional medicine since prehistory [1]. These plants have long been utilized to treat dry coughs, bronchitis, whooping cough, and asthma and are described as an important antitussive for various respiratory diseases like tuberculosis [2]. Nowadays extracts from these plants are included in several herbal remedies with immune-modulatory, anticancer, anti-spasmodic and antimicrobial activities [3, 4]. The pharmacological activity of Drosera plants has been attributed to the presence of naphthoquinones [5, 6]. In this study we report for the first time the chemical content of the carnivorous D. uniflora, the unique Chilean sundew representative of Drosera genus. Our findings revealed the presence of two naphthoquinone isomers in the same species, among other metabolites. According to the literature [7, 8, 9] the co-occurrence of these regioisomers, which are exclusive in the parent species, is very rare and may be of...

Notes

Acknowledgment

The authors would like to thank the Direccion de Investigacion (PR-F2-03CRN) for financial support, and Prof. Jose Darias from CSIC, Spain, for measuring the spectra of samples and Mrs. Stephanie Venables for her kind revision of this manuscript.

References

  1. 1.
    M. M. Cowan, Clin. Microbiol. Rev., 12, 564 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    D. Schnell, Carniv. Plant Newslett., 13, 34 (1984).Google Scholar
  3. 3.
    D. Durechova, M. Kacaniova, M. Terentjeva, J. Petrova, L. Hleba, and K. J. Iwona, Microbiol. Biotechnol. Food Sci., 5, 20 (2016).CrossRefGoogle Scholar
  4. 4.
    S. P. Devi, S. Kumaria, S. R Rao, and P. Tandon, Trop. Plant Biol., 9, 267 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Kawiak and E. Lojkowska, PLoS One, 11 (2), e0147718 (2016).Google Scholar
  6. 6.
    A. T. Mbareng and V. Kuete, Afr. Health Sci., 14, 201 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Culham and R. J. Gornall, Biochem. Syst. Ecol., 22, 507 (1994).CrossRefGoogle Scholar
  8. 8.
    P. A. Egan and F. van der Kooy, Chem. Biodiv., 9, 1033 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Schlauer and A. Fleischmann, Biochem. Syst. Ecol., 66, 33 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Rischer, A. Hamm, and G. Bringmann, Phytochemsitry, 59, 603 (2002).CrossRefGoogle Scholar
  11. 11.
    J. Budzianowski, L. Skrzypczak, and K. Kukulczanka, Acta Hortic., 330, 277 (1993).CrossRefGoogle Scholar
  12. 12.
    G. Ye, M. Fan, and G. Huang, Chem. Nat. Compd., 43, 125 (2007).CrossRefGoogle Scholar
  13. 13.
    M. P. Oliveira, G. D. Silva, L. P. Duarte, V. Peres, R. R. Silva, G. H. de Souza, V. J. Belinelo, and S. A. Vieira, J. Chem. Pharm. Res., 2, 265 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Productos NaturalesUniversidad de MagallanesPunta ArenasChile

Personalised recommendations